期刊文献+

基于改进最小二乘支持向量机方法的短期风速预测 被引量:16

A Predictive Model of Short-Term Wind Speed Based on Improved Least Squares Support Vector Machine Algorithm
下载PDF
导出
摘要 为了进一步提高短期风速预测的精度,分析了一种改进的风速预测方法.该方法考虑风速发生变化的极值点对总体预测误差的影响,以及预测曲线较实际曲线产生的滞后,分别对预测数据进行了极值点修正和偏移量处理.在对未来1 h风速进行预测时,相比粒子群优化(PSO)的最小二乘支持向量机(LS-SVM)模型、未经优化的LS-SVM模型及反向传播(BP)神经网络模型,所提出的模型具有较高的预测精度和运算速度.算例结果表明,改进的LS-SVM算法是进行短期风速预测的有效方法. In order to improve the forecast precision,an improved wind speed forecasting algorithm was discussed.The new method has modified extreme points and processed offset of predicting data,considering with the extreme points of the change in wind speed affecting the prediction error and the delay of prediction curve compared with actual wind speed.The forecasting model has better prediction accuracy and better computing speed to predict wind speed for the next one hour,compared with the wind speed model based on least squares support vector machine optimized by particle swarm optimization algorithm(PSO-LS-SVM),least squares support vector machine(LS-SVM) and back propagation(BP) neural network.The simulation results show that the improved least squares support vector machine is an effective method for short-term wind forecasting.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第8期1125-1129,1135,共6页 Journal of Shanghai Jiaotong University
基金 江苏省科技厅工业科技支撑计划项目(BE2009166)
关键词 风速预测 粒子群优化 最小二乘支持向量机 极值点 偏移量 wind speed forecasting particle swarm optimization(PSO) least squares support vector machine(LS-SVM) extreme points offset
  • 相关文献

参考文献11

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2Mastorocostas P A, Theochairs J B, Bakirtzis A G. Fuzzy modeling for short term load forecasting using the orthogonal least squares method [J]. IEEE Trans Energy Conversion, 1999, 14 ( 1 ) : 29-36.
  • 3潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):87-91. 被引量:110
  • 4Fadare D A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria [J]. Applied Energy, 2010, 87: 934-942.
  • 5Abdel-Aal R E, Elhadidy M A, Shaahid S M. Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks [J]. Renewable Energy, 2009, 34:1686-1699.
  • 6Hocaoglu F O, Fidan M, Gerek O N. Mycielski approach for wind speed prediction [J]. Energy Conversion and Management, 2009, 50 : 1436-1443.
  • 7Salcedo Sanz S, Perez-Bellidoa M, Ortiz-Garcia E G, et al. Hybridizing the fifth generation mesoscale model with artificial neural networks for short-termwind speed prediction[J].Renewable Energy, 2009, 34(6) : 1451-1457.
  • 8Kavasseri R G, Seetharaman K. Day ahead wind speed forecasting using f-ARIMA models [J]. Renewable Energy, 2009, 34(5) : 1388-1393.
  • 9杜颖,卢继平,李青,邓颖玲.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术,2008,32(15):62-66. 被引量:131
  • 10耿艳,韩学山,韩力.基于最小二乘支持向量机的短期负荷预测[J].电网技术,2008,32(18):72-76. 被引量:60

二级参考文献62

共引文献781

同被引文献132

引证文献16

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部