期刊文献+

基于等距离映射的非线性动态故障检测方法 被引量:13

Nonlinear Dynamic Fault Detection Method Based on Isometric Mapping
下载PDF
导出
摘要 针对化工过程数据强非线性和动态性的特点,提出了一种基于动态等距离映射(Dynamic Isometric Mapping,DISOMAP)流形学习的非线性过程故障检测方法.该方法首先采用DISOMAP算法提取训练样本的子流形特征,自适应学习近邻点参数,保留了采样数据的流形结构,然后运用线性回归方法得到原空间和降维子流形空间的投影映射,从而将观测数据从原高维空间映射到低维嵌入空间,最后在变换后的低维空间构造统计量T2和SPE进行监控.TE过程的仿真结果表明,所提出的DISOMAP故障检测方法可以比核主元分析(Kernel Principle Component Analysis,KPCA)更为有效地监控过程变化,检测到故障的发生. The data collected from chemical process are strongly nonlinear and dynamic related.To solve this problem,a nonlinear dynamic fault detection method using dynamic isometric mapping(DISOMAP) manifold learning was proposed.It first extracts sub-manifold feature from original data set with adaptive neighbor parameters,which preserves geometric structure.Then linear regression projection mapping which maps the original high dimension space to a low dimension embedding space is used.Finally,T2 and SPE statistics are constructed in the process monitoring application.The simulation results of Tennessee Eastman process show that DISOMAP-based method is more effective than KPCA(kernel principal component analysis) for process monitoring and fault detection.
作者 张妮 田学民
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第8期1202-1206,共5页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)项目(2007AA04Z193) 山东省自然科学基金资助项目(Y2007G49)
关键词 动态等距离映射 流形学习 非线性 故障检测 dynamic isometric mapping(DISOMAP) manifold learning non-linear fault detection
  • 相关文献

参考文献10

  • 1Russell L H, Braatz R D. Fault detection and diagnosis in industrial system[M]. London: Springer Verlag Press, 2001.
  • 2Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59 (1) : 223-224.
  • 3Li Min, Xu Jinwu. Multiple manifolds analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009, 23(8): 2500 2509.
  • 4张伟,周维佳,李斌.基于分维LLE和Fisher判别的故障诊断方法[J].仪器仪表学报,2010,31(2):325-333. 被引量:13
  • 5Shao Ji-dong, Rong Gang. Nonlinear process monito ring based on maximum variance unfolding projections [J]. Expert Systems with Applications, 2009, 36 (8) : 11332-11340.
  • 6魏宪,李元祥,赵海涛,庹红娅,许鹏.基于改进ISOMAP算法的图像分类[J].上海交通大学学报,2010,44(7):911-915. 被引量:3
  • 7Elizaveta Levina, Ann Arbor Mi. Maximum likelihood estimation of intrinsic dimension[J]. Advances in Neural Information Processing Systems, 2004, 17 :777-784.
  • 8Tenenbaum J B, Vin de Silva, Landford J C. A glob al geometric framework of nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 9邵超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877. 被引量:20
  • 10Downs J J, Vogel E F. A plant-wide industrial process control problem[J].Computers and ChemicalEngineering, 1993, 17(3): 245-255.

二级参考文献36

  • 1SAMUEL L. Some studies in machine learning using the game of checkers[J]. Part II. IBM Journal Research and Development, 1967,11(4):601-608.
  • 2DUNIA R. Use of principal component analysis for sensor fault identification[J]. Computers chem. Eng., 1996,(1.20):713-718.
  • 3JACKSON J E. Principal component and factor analysis: Part I - principal component[J]. Journal of Quality Technology, 1980,(12):201-21.
  • 4HASTIE T. Principle curves and surfaces[R]. Technical Report, Laboratory for Computational Statistics, Stanford University, 1984.
  • 5ROWEIS S, SAUL L. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000,290(22):2323-2326.
  • 6DONOHO D L, GRIMES C. Hessian eigenmaps: locally linear embedding, techniques for high-dimensional data[C]. Proceedings of the National Academy of Sciences, 2003,100(10):5591-5596.
  • 7DE RIDDER D, KOUROPTEVA O, OKUN O. Supervised locally linear embedding[R]. Lecture Notes in Artificial Intelligence Germany: Springer, 2003:333- 341.
  • 8KEGL B. Intrinsic dimension estimation using packing numbers[C]. Neural Information Processing Systems 15 (NIPS'2002), 2003.
  • 9GRASSBERGEL J, PROCACRIA L. Measuring the strangeness of strange attractor[J]. Physical D, 1983, (9): 189-208.
  • 10DOWNS J J, VOGEL E F. Plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993,17(3):245-255.

共引文献33

同被引文献112

引证文献13

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部