期刊文献+

基于分数阶Fourier变换的远程水声通信技术研究 被引量:13

Research on Long Range Underwater Acoustic Communication Technology Based on Fractional Fourier Transform
下载PDF
导出
摘要 针对水声通信中所采用的窄带信号传输距离近和抗干扰能力不足的问题,提出一种采用线性调频(LFM)作为载波信号,采用分数阶Fourier变换作为解码方式的水声通信方案。该方案采用在时域进行LFM信号的码元分割,在分数阶变换域借用脉冲位置调制(PPM)进行解码的方法进行通信,并通过Rake接收机进行路径分集接收抑制水声信道多途效应所产生的码间干扰(ISI).该通信方案发挥了分数阶Fourier变换抗干扰能力强的优点,并且相较于传统水声通信方法具有通信速率高的特点,最高通信速率可达800 bit/s.通过大量仿真验证了该方案的可行性和鲁棒性,可应用于远程水声通信。 Aimed at short propagation distance and poor anti-jamming capability of narrow-band signal in underwater acoustic(UWA) communication,a new UWA communication scheme is proposed on the basis of fractional Fourier transform which used LFM signals as carrier signals.LFM signals are divided into groups as coding signals in time domain and the coding signals are decoded by using pulse position modulation(PPM) in fractional domain.A Rake receiver is presented to suppress UWA channel's multi-path effect which could lead to inter-symbol interference(ISI).Comparing to traditional UWA communication,this scheme has strong anti-interference ability and high communication rate;the maximum communication rate can be up to 800 bit/s.The feasibility and robustness of this system are verified through simulations,and it is helpful to the long range UWA communication.
出处 《兵工学报》 EI CAS CSCD 北大核心 2011年第9期1159-1164,共6页 Acta Armamentarii
基金 国家自然科学基金资助项目(60802060) 教育部高等学校博士点基金资助项目(200802171061) 水声技术重点实验室基金资助项目(9140C20080211OC20)
关键词 通信技术 水声通信 分数阶FOURIER变换 脉冲位置调制 RAKE接收机 communication technique underwater acoustic communication fractional Fourier transform pulse position modulation Rake receiver
  • 相关文献

参考文献11

  • 1陶然,邓兵,王越.分数阶FOURIER变换在信号处理领域的研究进展[J].中国科学(E辑),2006,36(2):113-136. 被引量:80
  • 2殷敬伟,惠俊英,蔡平,郭龙祥.分数阶Fourier变换在深海远程水声通信中的应用[J].电子学报,2007,35(8):1499-1504. 被引量:12
  • 3Almeida L B. The fractional Fourier transform and time-frequency representation[ J]. IEEE Transaction Signal Processing, 1994, 42 (11): 3084 -3091.
  • 4Pei S C, Yeh M H, Tseng C C. Discrete fractional Fourier transform based on orthogonal projections[ J]. IEEE Transaction Signal Processing, 1999, 47(5): 1335- 1348.
  • 5Candan C, Kutay M A, Ozaktas H M. The discrete fractional Fourier transform[J]. IEEE Transaction Signal Processing, 2000, 48 (5) : 1335 -1348.
  • 6Ozaktas H M, Arikan O, Kutay A A, et al. Digital computation of the Fourier transform [ J]. IEEE Transaction Signal Processing, 1996, 44(9) : 2141 -2150.
  • 7Pei S C, Ding J J. Closed-form discrete fractional and affine Fourier transform [ J]. IEEE Transaction Signal Processing, 2000, 48 (5) : 1338 - 1353.
  • 8Santhanam B, McClellan J H. The discreet rotational Fourier transform [J]. IEEE Transaction Signal Processing, 1996, 44 (4) : 994 -998.
  • 9Massimiliano M M. A muhicarrier system based on the fractional fourier transform for time-frequency-selective channels [ J ]. IEEE Transaction on Communications, 2001, 49 (6) : 994 - 998.
  • 10Tang Q L, Yang L Q, Qin T F, et al. Energy-saving PPM schemes for WSNs [J]. Science in China Series F: Information Science, 2008, 51(5): 571 -585.

二级参考文献28

共引文献88

同被引文献78

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部