摘要
建立了弹性圆柱型储液箱同液体耦合系统在外激励下的非线性振动方程组.采用多尺度法、奇异性理论研究此非线性振动系统共振解的分岔行为,通过对其分岔行为的分析和讨论,得到了这一系统的多种转迁集和分岔图,建立了系统参数与其拓扑分岔解的联系,并且分析了不同参数下系统的分岔特性,为实现储液器参数的优化控制提供了理论依据.
The nonlinear equations of an elastic tank-liquid coupling system which was subjected to external excitation were established. By means of multi-scale method and singularity theory, the bifurcation behaviors of the system were investigated and analyzed, so that abundant nonlinear dynamical behaviors of the coupling system were obtained, which could make a further explanation of the relationship between physical parameters and bifurcation solutions. In order to realize the parameters' optimal control, the results provide its theoretical basis.
出处
《应用数学和力学》
CSCD
北大核心
2011年第9期1092-1099,共8页
Applied Mathematics and Mechanics
基金
国家自然科学基金重点资助项目(10632040)
天津市自然科学基金重点资助项目(09JCZDJC26800)
关键词
弹性液固耦合系统
分岔方程
奇异性理论
晃动控制
elastic tank-liquid coupling system
bifurcation equation
singularity theory
sloshing control