期刊文献+

基于平均条带划分的点的包含性测试方法 被引量:1

Point inclusion test based on averagely-divided stripes
下载PDF
导出
摘要 提出了一个大量点与多边形关系计算的方法。该方法首先对多边形进行简单预处理,然后采用射线法对每个点进行包含性测试。预处理将多边形的最小包围矩形划分为相同大小的竖直条带,并计算每条边在哪些条带中,该预处理过程简单快速。利用预处理信息对点进行包含性测试时,只需用当前点构造的射线和点所在的条带包含的边进行相交测试即可。每个条带内包含的边的数目是有限的,常常接近一个常数,远远小于多边形的边数,因此相交测试计算次数显著减少,从而可以快速求得点与多边形的关系。该方法已经实现,并用人造数据和真实地理数据进行测试,测试结果证明该方法正确有效。 This paper presents a straightforward and efficient method for point inclusion test for large data sets. The method first preprocesses the polygon simply, and then adopts the ray-crossing idea for each inclusion test. The preprocessing just computes each edge' s location on the averagely-divided vertical stripes. It is simple and not time consuming. Then each point inclusion test can benefit from the preprocessing--Those edges which may intersect with the ray for each point according with the point' s location lying in the vertical stripes can be easily got, and the number of those edges is limited, usually near a constant number. As a result, the most time-consuming process of intersecting-tests is reduced obviously, and the inclusion test for each point is rapid. The method was implemented and tested on artificial data and real world GIS data. The testing result and the comparisons with other methods demonstrated its correctness and effectiveness.
出处 《高技术通讯》 CAS CSCD 北大核心 2011年第8期810-816,共7页 Chinese High Technology Letters
基金 863计划(2009AAl22226)资助项目.
关键词 均匀条带划分法 射线法 点包含性测试 多边形 计算几何 averagely-divided stripes metho ray-crossing idea point inclusion test polygon computationalgeometry
  • 相关文献

参考文献17

  • 1Haines E. Point in Polygon Strategies. In: Graphics Gems IV, San Diego, CA:Academic Press Professional, Inc. 1994. 24-46.
  • 2Li J, Wang W, Wu E. Point-in-polygon tests by convex decomposition. Computers & Graphics, 2007, 31 (4): 636-648.
  • 3Huang C, Shih T. On the complexity of point-in-polygon algorithms. Computers & Geosciences, 1997, 23 ( 1 ) :109-118.
  • 4Zalik B, Kolingerova I. A cell-based point-in-polygon algorithm suitable for large sets of points. Computers & Geosciences, 2001, 27 (10) : 1135-1145.
  • 5Hormann K, Agathos A. The point in polygon problem for arbitrary polygons. Computational Geometry: Theory and Applications, 2001, 20(3):131-144.
  • 6Feito F, Tortes J C, Urena A. Orientation, simplicity, and inclusion test for planar polygons. Computers & Graphics, 1995, 19(4):595-600.
  • 7Wu H, Gong J, Li D, et al. An algebraic algorithm for point inclusion query. Computers & Graphics, 2000, 24 (4) : 517-522.
  • 8Schirra S. How reliable are Practical Point-in-Polygon Strategies. In: Proceedings of the 16th Annual European Symposium, Heidelberg, Germany: Springer Berlin, 2008. 744-755.
  • 9Lewis J L. A reliable test for inclusion of a point in a polygon. ACM SIGCSE Bulletin, 2002, 34(4) :81-84.
  • 10Wang W, Li J, Wu E. 2D point-in-polygon test by classifying edges into layers. Computers & Graphics, 2005, 29 ( 3 ) :427-439.

二级参考文献33

  • 1张宁宁,张树有,谭建荣.映射相关边概念的多边形内外点判别算法[J].计算机辅助设计与图形学学报,2004,16(7):935-938. 被引量:20
  • 2温星,陆国栋,李基拓.基于拓扑映射的点集在凸多边形内外判断算法[J].中国图象图形学报(A辑),2003,8(4):468-471. 被引量:3
  • 3肖忠晖,卢振荣,张谦.简单多边形凸单元剖分的编码算法[J].计算机学报,1996,19(6):477-480. 被引量:27
  • 4王世平,工程图学学报,1995年,16卷,1期,42页
  • 5金廷赞,计算机图形学,1988年,226页
  • 6Gradinscak Zlatko. A study on computer-based geometric modelling in engineering graphics [J]. Computer Networks,1998, 30(20/21): 1915~1922
  • 7Wolfe Rosalee. Teaching visual aspects in an introductory computer graphics course [J]. Computers & Graphics, 2002,26(1): 163~168
  • 8Tate S J, Jared G E M. Recognising symmetry in solid models [J]. Computer-Aided Design, 2003, 35(7): 673~692
  • 9Feito F, Torres J C, Urena A. Orientation, simplicity, and inclusion test for planar polygons [J]. Computers & Graphics,1995, 19(4): 595~600
  • 10Feito F, Torres J C. Inclusion test for general polyhedra [J]. Computers & Graphics, 1997, 21(1): 23~30

共引文献105

同被引文献9

  • 1陈国良并行计算:结构·算法·编程[M].北京:高等教育出版社,2003.4-7.
  • 2HUANG C, SHIH T. On the complexity of point-in-polygon al- gorithms[J]. Computers 8< Geosciences, 1997, 23 ( 1 ) : 109 - 118.
  • 3ZALIC B,KOLINGEROVA I. A cell-based point-in-polygon al- gorithm suitable for large sets of points[J]. Computers 8< Geo- sciences, 2001,27(10) : 1135-1145.
  • 4HORMANN K, AGATHOS A. The point in polygon problem for arbitrary polyogns[J] Computational Geometry: Theory and Applications, 2001,20(3) : 131 - 144.
  • 5FEITO F, TERRES J C, URENA A. Orientation, simplicity, and in- clusion test for planar polygons[J]. Computers 8< Graphics, 1995,19(4) : 595-600.
  • 6LI J,WANG W,WU E. Point-in-polygon tests by convex decompo- sition[J]. Computer 8< Graphics, 2007,31 (4) : 636- 648.
  • 7AGARWAL D,PURI S, HE X, et al. A system for GIS polygo nal overlay computation on linux cluster-an experience and per- formance report[A]. Parallel and Distributed Processing Sym- posium Workshops : PhD Forum (IPDPSW), 2012 IEEE 26th International IEEE[C]. 2012. 1433-1439.
  • 8GUTTMAN A. R-trees: A dynamic index structure for spatial searching[J]. ACM, 1984,14(2) :47-57.
  • 9王结臣,王豹,胡玮,张辉.并行空间分析算法研究进展及评述[J].地理与地理信息科学,2011,27(6):1-5. 被引量:29

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部