期刊文献+

用于目标快速识别的特征选取方法 被引量:1

Research on selection of features approach for fast object recognition
原文传递
导出
摘要 现有的基于图像局部特征的目标识别算法,在保证较高识别率的情况下无法满足实时性要求。针对这个问题,考虑到多数局部特征是不稳定、不可靠或与目标无关的,可通过正确匹配的训练图像,对图像局部特征选取一个子集用于目标识别。提出一种在特征包方法基础上,通过无监督地选取鲁棒性强及足够特殊、稳定的局部特征用于目标识别的新方法并应用于目标识别实验。实验结果证实该方法在仅仅使用原图像约4%的局部特征的情况下获得了与使用全部局部特征几乎相近的目标识别率,目标识别时间由秒缩短至几十毫秒,满足了目标识别实时性要求。 Existing methods based on local features cannot recognize objects in real-time while keeping a high recognition rate. Considering that many local features are unstable, unreliable, or irrelevant, we are able to select a small subset of features used for recognition by correctly matching features in training images. A new, robust, and stable method based on a bag-of-features is proposed in this paper. Distinctive features are selected by an unsupervised preprocessing step. Our experiments demonstrate that this selection approach can reduce the amount of local features and reduce the memory requirements, while allowing an average of 4% of the original features per image to provide matching performance that is as accurate as the full set. The method can meet real-time requirements since the time required for matching has been reduced from seconds to tens of milliseconds.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第9期1625-1631,共7页 Journal of Image and Graphics
基金 国家自然科学基金重点项目(90816003 U0934004)
关键词 局部特征 特征包 目标识别 实时性 local features bag- of- features object recognition real- time
  • 相关文献

参考文献10

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004, 60(2) :91-110.
  • 2Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors [ J ]. International Journal on Computer Vision, 2004, 60(1) :63-86.
  • 3Lowe D G. Local feature view clustering for 3D object recognition [ C ]//IEEE Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA : IEEE Press ,2001:682-688.
  • 4Munich M E, Pirjanian P, Bemardo E D, et al. IFT- ing through features with ViPR: application of visual pattern recognition to robotics and automation [ J ]. IEEE Robotics and Automation Magazine, 2006,13 ( 3 ) :72- 77.
  • 5Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 ( 10 ) : 1615-1630.
  • 6Philbin J, Chum O, Isard M, et al. Object retrieval with large vocabularies and fast spatial matching [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE Press .2007 :1-8.
  • 7Philbin J, Chum O, Isard M, et al. Lost in quantization : improving particular object retrieval in large scale image databases [ C ]// IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska: IEEE Press, 2008 : 1 - 8.
  • 8熊英,马惠敏.3维物体SIFT特征的提取与应用[J].中国图象图形学报,2010,15(5):814-819. 被引量:22
  • 9张洁玉,白小晶,徐丽燕,陈强,夏德深.基于空间分布描述符的SIFT误匹配校正方法[J].中国图象图形学报,2009,14(7):1369-1377. 被引量:14
  • 10Csurka G,Dance C R,Fan Lixin,et al. Visual categorization with bags of keypoints [ C ]//ECCV International Workshop on Statistical Learning in Computer Vision. Prague, Czech Republic: ECCV Press ,2004 : 1-22.

二级参考文献26

  • 1吕静,苏显渝,王海霞.旋转不变的三维物体识别[J].光电子.激光,2004,15(12):1492-1497. 被引量:5
  • 2陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 3孙毅刚,杨立勇,孙承琦.仿射坐标系下多视点的三维物体识别方法研究[J].中国民航学院学报,2005,23(6):53-55. 被引量:1
  • 4Mikolajczyk K,Schmid C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (10):1615-1630.
  • 5Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 6Bay H,Tuytelaars T,Cool L V.SURF speeded up robust features[A].In:Proceedings of the Ninth European Conference on Computer Vision[C],Grez,Anstcia,2006:404-417.
  • 7AbdeI-Hakim A E,Farag A A.CS1FT:A SIFt descriptor with color invaciant charactoriatics[A].In:Proceondings of the IEEE Conference on Computer Vision and Pattern Recognition[C],New York,USA,2006,2:1978-1983.
  • 8Tuytelaars T,Gool L V.Matching widely separated views based on affine invaciant regions[J].International Journal of Computer Vision,2004,59(1):61-85.
  • 9Tuze O,Porikli F,Mcer P.Region covarianco:A fast deleriptor for detection and classification[A].In:Proceedings of 9th European Conference on Computer Vision r C l,Grazu,Austrais,2006,2:589-600.
  • 10Mian A S,Bennamoun M,Owens R A.Face recognition using 2D and 3 D multimodal local features[A].In:Proceedings of International Symposium on Visual Computing[C],Lake Tahoe,Nevada,USA,2006,4292:860-870.

共引文献34

同被引文献11

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部