期刊文献+

偏序集范畴的Cartesian闭性 被引量:1

Cartesian closedness of the category of posets
原文传递
导出
摘要 作者讨论了偏序集范畴的Cartesian闭性,给出了偏序集范畴的满子范畴具有Cartesian闭性的充分必要条件.特别地,作者证明了交连续半格(不要求定向完备性)范畴是Cartesian闭范畴,L-CDCPO范畴是L-POSET范畴的极大Cartesian闭子范畴. In this paper, the authors investigate the Cartesian closedness of the category of posets, and obtain the sufficient and necessary condition such that a full subcategory of POSET is Cartesian closed. Particularly, they show that the category of meet-continuous semilattices is Cartesian closed and L-CDCPO is the largest cartesian closed full subcategory of L-POSET.
作者 曾钰 寇辉
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期725-728,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10871113) 教育部新世纪优秀人才支持计划(070576)
关键词 偏序集 范畴 Cartesian闭性 poset, category, Cartesian c[osedness
  • 相关文献

参考文献7

  • 1Abramsky S, Jung A. Domain theory [C]//Abram- sky S, Gabbay M, Maibaum E. Handbook of Logi- cln Computer Science. Oxford: Clarendon Press, 1994.
  • 2Sierz GHKLM, Hofmann K H, Keimel K, et al. Continuous lattices and domains [M]. Cambridge: Cambridge University Press, 2003.
  • 3Jung A. Cartesian closed categories of domains [M]. Amsterdam, CWI Tracts, 1989.
  • 4寇辉.完备半格范畴的反射与余反射子范畴[J].四川大学学报(自然科学版),1998,35(4):495-499. 被引量:5
  • 5Lane S M. Categories for the working mathematician [M]. New York/Berlin: Springer-Verlag, 1971.
  • 6Mislove M. Topology, domain theory and theoretical computer science[J]. Topology andlts Applications, 1998, 89: 3.
  • 7索剑峰,梁基华.函数空间连续性的一个注记[J].四川大学学报(自然科学版),2004,41(4):724-727. 被引量:2

二级参考文献7

  • 1[1]Liu Y M, Liang J H. Solutions to two problems of J. D. Lawson and M. Mislove[J]. Topology and Its Application, 1996,69:153 - 164.
  • 2[2]Liang J H, Keimel K. Compact continuous L-domain[J]. Computer and Mathemaics Application, 1999, 38:81 - 89.
  • 3[3]Jung A. Cartesian closed categories of domain[M]. UK:CWI Tracts, 1988.
  • 4[4]Erker T, Escardo M H, Keimel K. The way-below relation of function spaces over semantic domains[J]. Topology and Its Application, 1998, 89:61 - 74.
  • 5[5]Gierz G. A compendium of continuouw lattices[M]. Berlin:Springer-Verlag, 1980.
  • 6[6]Abramsky S, Jung A. Domain theory, in:S. Abramsky, D.M. GabbayandT. S.E. Maibaum, eds, handbookof logic in computer science (Vol Ⅲ ) [ M]. Oxford: Oxford University Press, 1994.
  • 7[7]Kou H, Luo M K. RW-spaces and compactness of function spaces for L-domains[J]. Topology and Its Application, 2003,129: 211 - 220.

共引文献4

同被引文献10

  • 1Abramsky S, Jung A. Domain Theory[M]. Ox- ford: Oxford University Press, 1994.
  • 2Amadio R M, Curien P L. Domains and Lambda- Calculi [M]. Cambridge: Cambride University Press, 1998.
  • 3Battenfeld I Schroder M Simpson A. A convenient category of domains [J] . Electr Notes in Theor Comp Sci, 2007, 172: 69.
  • 4Gierz G. Continuous lattices and domains [M]. Cambridge: Cambridge University Press, 2003.
  • 5Banaschewski B, Hoffmann R E. Continuous Lat- tices[M]. Berlin: Springer, 1981.
  • 6Herrlich H, Porst H E. Category Theory at Work [M]. Berlin: Heldermann, 1991.
  • 7Bjorner D, Broy M, Pottosin I V. Formal Methods in Programming and Their Applications[M]. Ber- lin: Springer, 1993.
  • 8Ershov Yu L. The bounded complete hull of an α - space[J]. Theoretic Computer Science, 1997, 175: 3.
  • 9Keimel M. Topological cone: functional analysis in T0-setting[J]. Semigroup Forum, 2008, 77: 109.
  • 10赵浩然,寇辉.关于概率幂domain的一个注记[J].四川大学学报(自然科学版),2012,49(4):743-746. 被引量:3

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部