摘要
设d(k)与v_2(k)是分别是正整数k以2为基底的指标和与整除k的2的最高方幂.作者首先证明了v_2(S(3·2~n+1,k+1))=d(k)-1,其中n,k∈Z^+且1≤k≤2~n~1,然后给出了v_2(3·2~n+2,k+2))一些计算公式和下界,最后给出了关于S(3·2~n+1,k+1)的一些同余式.
Let n and k be positive integers, d(k) and v2 (k) aenote tne sum of the digits in the binary representation of k and the highest power of two dividertg k, respectively. In this paper, the authors prove that U2(S(3 · 2"+l,k+l))=d(k)-l'l≤k〈2n-l" Moreover, the authors obtain some results of v2 (S(3 · 2" + 2, k + 2) ). Finally, they give two congruences of S(3 · 2" + 1, k + 1) for two special values of k.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第4期745-747,共3页
Journal of Sichuan University(Natural Science Edition)