期刊文献+

一种改进的图像分块压缩感知模型 被引量:9

Improved model of image block compressed sensing
下载PDF
导出
摘要 分块压缩感知用于图像获取可以解决传统压缩感知在重构时运算量大的问题,但是运用分块压缩感知却使重构图像的质量有所降低。提出了一种改进的图像分块压缩感知算法。该算法通过对观测矩阵加权,保证了图像低频部分在重构时获得更大的精度,提高了图像的质量。另外,算法根据各图像块不同纹理复杂性,自适应地改变观测值数目,使得在保证图像质量的前提下,重构所需的总观测值数目更少。实验证明了该算法的有效性。 The technique of block compressed sensing which is used in image acquisition can solve the problem of large amount of computing which exits in image construction when the traditional compressed sensing is used.But using block compressed sensing,the constructed image quality is degraded.An algorithm of improved block compressed sensing is proposed.By designing a weighting scheme for the sampling matrix,the reconstruction accuracy of low-frequency part of the image can be increased,and so the quality of image is improved.And by altering adaptively the measurements number according to the different texture features of the image block,the number of measurements will be much fewer under the premise of image quality.The experiment proves the efficiency of the algorithm.
作者 李蕴华
出处 《计算机工程与应用》 CSCD 北大核心 2011年第25期186-189,193,共5页 Computer Engineering and Applications
关键词 压缩感知 图像重构 稀疏表示 信号采样 compressed sensing image construction sparse representation signal sampling
  • 相关文献

参考文献13

  • 1Donoho D.Compressed sensing[J].IEEE Trans on Information Theory, 2006,52(4) : 1289-1306.
  • 2Candes E.Compressive sampling[C]//Int Congress of Mathemat- ics,2006.1433-1452.
  • 3Romberg J.Imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2) : 14-20.
  • 4Duarte M, Davenport M, Takhar D, et al.Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine, 2008,25 (2) : 83-91.
  • 5Lu Gan.Block compressed sensing of natural images[C]//Conf on Digital Signal Processing , Cardiff, UK,2007.
  • 6Candes E J.The restricted isometry property and its implica- tions for compressed sensing[J].Academie des Sciences, 2006, 346.
  • 7Baraniuk R.Compressive sensing[J].IEEE Signal Proeessing Mag- azine,2007,24(4) : 118-121.
  • 8Candes E,Romberg J,Tao T.Stable signal recovery from incom- plete and inaccurate information[J].Communications on Pure and Applied Mathematics,2006,59(8) : 1207-1223.
  • 9Kim S,Koh K, Lustig M, et al.An interior-point method for large-scale ll-regularized logistic regression[J].IEEE Journal of Selected Topics in Signal Processing, 2007,1 (4) : 606-617.
  • 10Fiqueiredo M A T, Nowak R D, Wright S J.Gradient projes- tion for sparse reconstruction: application to compressed sens- ing and other inverse problems[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-598.

同被引文献96

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部