期刊文献+

Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals

Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals
下载PDF
导出
摘要 A method to eliminate spiral waves and spatiotemporal chaos by using the synchronization transmission technology of network signals is proposed in this paper. The character of the spiral waves and the spatiotemporal chaos in the Fitzhugh-Nagumo model is presented. The network error evolution equation with spatiotemporal variables and the corresponding eigenvalue equation are determined based on the stability theory, and the global synchronization condition is obtained. Simulations are made in a complex network with Fitzhugh-Nagumo models as the nodes to verify the effectiveness of the synchronization transmission principle of the network signal. A method to eliminate spiral waves and spatiotemporal chaos by using the synchronization transmission technology of network signals is proposed in this paper. The character of the spiral waves and the spatiotemporal chaos in the Fitzhugh-Nagumo model is presented. The network error evolution equation with spatiotemporal variables and the corresponding eigenvalue equation are determined based on the stability theory, and the global synchronization condition is obtained. Simulations are made in a complex network with Fitzhugh-Nagumo models as the nodes to verify the effectiveness of the synchronization transmission principle of the network signal.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期142-147,共6页 中国物理B(英文版)
基金 Project Supported by the National Natural Science Foundation of China (Grant No.60974004)
关键词 SYNCHRONIZATION complex network spatiotemporal chaos spiral waves synchronization, complex network, spatiotemporal chaos, spiral waves
  • 相关文献

参考文献12

  • 1Karma A 1993 Phys. Rev. Lett. 71 1103.
  • 2Sinha S, Pande A and Pandit R. 2001 Phys. Rev. Lett. 86 3678.
  • 3Zhang H, Hu B and Hu G 2003 Phys. Rev. E 68 026134.
  • 4Zhang C X, Zhang H, Ouyang Q, Hu B and Gunavatne G H 2003 Phys. Rev. E 68 036202.
  • 5Zhang H, Ruan X S, Hu B and Ouyang Q 2004 Phys. Rev. E 70 016212.
  • 6Naknaimueang S, Allen M A and Miiller S C 2006 Phys. Rev. E 74 066209.
  • 7Zhan M and Kapral R 2006 Phys. Rev. E 73 026224.
  • 8Gao J Z, Yang S X, Xie L L and Gao J H 2011 Chin. Phys. B 20 030505.
  • 9Zhong M and Tang G N 2010 Acta Phys. Sin. 59 1593.
  • 10Martens E A, Laing C R and Strogatz S H 2010 Phys. Rev. Lett. 104 044101.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部