期刊文献+

Flat-band voltage shift in metal-gate/high-k/Si stacks

Flat-band voltage shift in metal-gate/high-k/Si stacks
下载PDF
导出
摘要 In metal-gate/high-k stacks adopted by the 45 nm technology node, the fiat-band voltage (Vfb) shift remains one of the most critical challenges, particularly the flat-band voltage roll-off (Vfb roll-off) phenomenon in p-channel metal- oxide-semiconductor (pMOS) devices with an ultrathin oxide layer. In this paper, recent progress on the investigation of the Vfb shift and the origin of the Vfb roll-off in the metal-gate/high-k pMOS stacks are reviewed. Methods that can alleviate the Vfb shift phenomenon are summarized and the future research trend is described. In metal-gate/high-k stacks adopted by the 45 nm technology node, the fiat-band voltage (Vfb) shift remains one of the most critical challenges, particularly the flat-band voltage roll-off (Vfb roll-off) phenomenon in p-channel metal- oxide-semiconductor (pMOS) devices with an ultrathin oxide layer. In this paper, recent progress on the investigation of the Vfb shift and the origin of the Vfb roll-off in the metal-gate/high-k pMOS stacks are reviewed. Methods that can alleviate the Vfb shift phenomenon are summarized and the future research trend is described.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期381-391,共11页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grants Nos.50802005 and 11074020) the Program for New Century Excellent Talents in University,China (Grant No.NCET-08-0029) the Ph.D.Program Foundation of Ministry of Education of China (Grant No.200800061055) the Hong Kong Research Grants Council General Research Funds,China (Grant No.CityU112608)
关键词 flat-band voltage shift Vfb roll-off metal gate high-k dielectrics flat-band voltage shift, Vfb roll-off, metal gate, high-k dielectrics
  • 相关文献

参考文献56

  • 1Han D D, Kang J F, Lin C H and Han R Q 2003 Chin. Phys. 12 325.
  • 2Houssa M, Pantisano L, Ragnarsson L, Degraeve R, Schram T, Pourtois G, de Gendt S, Groeseneken G and Heyns M M 2006 Mater. Sci. Eng. R 51 37.
  • 3Ragnarsson L A, Guha S, Copel M, Cartier E, Bojarczuk N A and Karasinski J 2001 Appl. Phys. Lett. 78 4169.
  • 4Zafar S, Callegari A, Gusev E and Fischetti M V 2003 J. Appl. Phys. 93 9298.
  • 5Houssa M, Afanas'ev V V, Stesmans A and Heyns M M 2000 Appl. Phys. Lett. 77 1885.
  • 6Lee B H, Oh J, Tseng H H, Jammy R and Huff H 2006 Mater. Today 9 32.
  • 7Park D G, Cho H J, Yeo I S, Roh J S and Hwang J M 2000 Appl. Phys. Lett. 77 2207.
  • 8Hobbs C C, Fonseca L R C, Knizhnik A, Dhandapani V, Samavedam S B, Taylor W J, Grant J M, Dip L G, Triyoso D H, Hegde R I, Gilmer D C, Garcia R, Roan D, Lovejoy M L, Rai R S, Hebert E A, Hsing-Huang T, Anderson S G H, White B E and Tobin P J 2004 IEEE Trans. Electron Dev. 51 978.
  • 9Miyata N, Yasuda T and Abe Y 2010 Appl. Phys. Expr. 3 054101.
  • 10Song S C, Park C S, Price J, Burham C, Choi R, Wen H C, Choi, K, Tseng H H, Lee B H and Jammy R 2007 IEEE Inernational Electron Devices Meetting, December 10-12, 2007 Washington D.C., USA, p. 337.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部