期刊文献+

Approximation by q Baskakov Beta Operators 被引量:2

Approximation by q Baskakov Beta Operators
原文传递
导出
摘要 In the present paper we introduce the q analogue of the Baskakov Beta operators. We establish some direct results in the polynomial weighted space of continuous functions defined on the interval [0, ∞). Then we obtain point-wise estimate, using the Lipschitz type maximal function. In the present paper we introduce the q analogue of the Baskakov Beta operators. We establish some direct results in the polynomial weighted space of continuous functions defined on the interval [0, ∞). Then we obtain point-wise estimate, using the Lipschitz type maximal function.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第4期569-580,共12页 应用数学学报(英文版)
关键词 q-Baskakov operators q-Baskakov-Beta operators modulus of continuity K-FUNCTIONAL weighted approximation rate of approximation q-Beta integral q-Baskakov operators, q-Baskakov-Beta operators, modulus of continuity, K-functional, weighted approximation, rate of approximation, q-Beta integral
  • 相关文献

参考文献16

  • 1Aral, A., Cupta, V. On q-Baskakov type operators. Demonstratio Mathematica, 42(1): 109 122 (2009).
  • 2De Vore, R.A., Lorentz, G.G. Constructive Approximation. Springer-Verlag, Berlin, 1993.
  • 3Finta, Z., Gupta, V. Approximation by q-Durrmeyer operators. J. Appl. Math. Comput., 29(1-2): 401-415 (2009).
  • 4Gadzhiev, A.D. Theorems of the type of P. P. Korovkin type theorems. Math. Zametki, 20(5): 781 786 (1976); English Translation, Math Notes, 20(5-6): 996-998 (1976).
  • 5Gadjiev, A.D., Efendiyev, R.O., Ibikli, E. On Korovkin type theorem in the space of locally integrable functions. Czechoslovak Math. J., 53(1): 45-53 (2003).
  • 6Gasper, G., Rahman, M. Basic Hypergeometrik Series, Encyclopedia of Mathematics and its Applications, Vol 35. Cambridge University Press, Cambridge, UK, 1990.
  • 7Gupta, V. A note on modified Baskakov type operators. Approx Theory and Its Appl., 10(3): 74-78 (1994).
  • 8Gupta, V., Heping, W. The rate of convergence of q-Durrmeyer operators for 0 < q < 1. Math. Methods Appl. Sci., 31(16): 1946-1955 (2008).
  • 9Jackson, F.H. On a q-definite integrals. Quarterly J. Pure Appl. Math., 41:193-203 (1910).
  • 10Kac, V.G., Cheung, P. Quantum Calculus, Universitext. Springer-Verlag, New York, 2002.

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部