期刊文献+

The Decision of Prime and Primary Ideal

The Decision of Prime and Primary Ideal
原文传递
导出
摘要 We give more efficient criteria to characterise prime ideal or primary ideal. Further, we obtain the necessary and sufficient conditions that an ideal is prime or primary in real field from the Grobner bases directly. We give more efficient criteria to characterise prime ideal or primary ideal. Further, we obtain the necessary and sufficient conditions that an ideal is prime or primary in real field from the Grobner bases directly.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第4期595-600,共6页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (No. 11071062) Hunan provincial Natural Science Foundation of China (No. 10JJ3065) Scientific Research Fund of Hunan province education Department (No. 10A033) Hunan Provincial Degree and Education of Graduate Student Foundation (No. JG2009A017)
关键词 Grobner basis prime ideal orimarv ideal Grobner basis, prime ideal, orimarv ideal
  • 相关文献

参考文献15

  • 1Adams, W., Loustaunau, P. An Introduction to Grobner Bases, Graduate Studies in Mathematics 3. Amer. Math. Soc., Providence, 1994.
  • 2Becker, T., Weispfenning, V. Grobner Bases-A Computational Approach to Commutative Algebra. Springer- Verlag, GTM 141, New York, 1993.
  • 3Buchberger, B. An algorithm for finding a basis for the residue class ring of a zero dimensiomal polynomial. PhD thesis, Universitat Innsbruck, Institut fiir Mathematik, 1965.
  • 4Buchberger, B, Grobner bases: An algorithmic method in polynomial ideal theory. In: Recent Trends in Multidimensional Systems Theory, N.K. Bose (Ed), D. Reidel, Dordrecht, 1985, Chapter 6.
  • 5Eisenbud, D. Direct method for primary decomposition. Invent Mth., 110:207-235 (1992).
  • 6Gao, S.,Wan D., Wang, M. Primary decomposition of zero-dimensional ideals over finite fields. Math. Comp., 78:509-521 (2009).
  • 7Gianni, P. Grobner bases and primary decomposition of polynomial ideals. J. Symb. Comp., 6(2): 149-167 (1988).
  • 8Grabe, H.G. Minimal primary decomposition and factorized GrSbner bases. Appl. Algebra Engrg. Comm. Comput., 8:265-278 (1997).
  • 9Greeuel, G.-M., Pfister, G. A Singular Introduction to Commutative Algebra. Spinger-Verlag, New York, 2002.
  • 10Liu J.W., Wang, M.S. The term orderings which are compatible with comosition Ⅱ. J. Smb. Comput, 35: 153-168 (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部