期刊文献+

The Monotone Method for Controllability of the Nonlinear Evolution Systems 被引量:1

The Monotone Method for Controllability of the Nonlinear Evolution Systems
原文传递
导出
摘要 In this paper, we study the controllability of the nonlinear evolution systems. We establish the controllability results by using the monotone operator theory. No compactness assumptions are imposed in the main results. We present an example to illustrate our results. In this paper, we study the controllability of the nonlinear evolution systems. We establish the controllability results by using the monotone operator theory. No compactness assumptions are imposed in the main results. We present an example to illustrate our results.
机构地区 College of Mathematics
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第4期721-726,共6页 应用数学学报(英文版)
基金 Supported by 985 project of Jilin University
关键词 CONTROLLABILITY monotone operator nonlinear control systems controllability, monotone operator, nonlinear control systems
  • 相关文献

参考文献23

  • 1Balachandran, K., Kim, J.H. Remarks on the paper "Controllability of second order differential inclusion in Banach spaces" [J. Math. Anal. Appl., 285:537-550 (2003)]. Journal of Mathematical Analysis and Application, 324:746 749 (2006).
  • 2Balachandran, K., Nandhagopal, T. Approximate controllability of non-linear evolution systems with time- varying delays. IMA Journal of Mathematical Control and Information, 23:499-513 (2006).
  • 3Chukwu, E.N., Lenhart, S.M. Controllability question for nonlinear systems in astract spaces. Journal of Optimization Theory and Applications, 68:437-462 (1991).
  • 4Diomedes, B., Hugo, L., Zoraida, S. A broad class of evolution equations are approximately controllable but never exactly controllable. Journal of Mathematical Control and Information, 22:310 320 (2005).
  • 5Do, V.N. A note on approximate controllability of semilinear systems. System Control Letter, 12:365-371 (1989).
  • 6Furi, M., Nistri, P., Pera, M.P., Zezza, P.L. Topological Methods for the Global Controllabilty of Nonlinear Systems. Journal of Optimization Theory and Applications, 45:231-256 (1985).
  • 7George, R.J. Approximate Controllability of Nonautonomous Semilinear Systems. Nonlinear Analysis: Theory, Methods, and Applications, 24:1377-1393 (1995).
  • 8Jeong, J.-M., Kim, J.-R., Rob, H.-H. Controllability for semilinear retarded control systems in Hilbert spaces. Journal of Dynamical and Control Systems, 13(4): 577 591 (2007).
  • 9Jeong, J.M., Kim, J.R. Controllability for semilinear functional integrodifferential equations. Bull. Korean Math. Soc., 46(3): 463-475 (2009).
  • 10Josh, M.C., Sukavanam, N. Approximate Solvability of Semilinear Operator Equation. Nonlinearity, 3: 519-525 (1990).

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部