摘要
In this paper, we consider the distribution of the maximum surplus before ruin in a generalized Erlang(n) risk process (i.e., convolution of n exponential distributions with possibly different parameters) perturbed by diffusion. It is shown that the maximum surplus distribution before ruin satisfies the integro-differential equation with certain boundary conditions. Explicit expressions are obtained when claims amounts are rationally distributed. Finally, the surplus distribution at the time of ruin and the surplus distribution immediately before ruin are presented.
In this paper, we consider the distribution of the maximum surplus before ruin in a generalized Erlang(n) risk process (i.e., convolution of n exponential distributions with possibly different parameters) perturbed by diffusion. It is shown that the maximum surplus distribution before ruin satisfies the integro-differential equation with certain boundary conditions. Explicit expressions are obtained when claims amounts are rationally distributed. Finally, the surplus distribution at the time of ruin and the surplus distribution immediately before ruin are presented.
基金
Supported by National Natural Science Foundation of China (Grant Nos. 10901164 and 11071037), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and Natural Science Foundation of CQ CSTC (Grant No. 2009BB8221)