期刊文献+

The Roman k-domatic Number of a Graph 被引量:1

The Roman k-domatic Number of a Graph
原文传递
导出
摘要 Let k be a positive integer. A Roman k-dominating function on a graph G is a labeling f : V(G) → {0, 1, 2} such that every vertex with label 0 has at least k neighbors with label 2. A set {f1, f2,..., fd} of distinct Roman k-dominating functions on G with the property that ∑di=1 fi(v) ≤ 2 for each v C V(G), is called a Roman k-dominating family (of functions) on G. The maximum number of functions in a Roman k-dominating family on G is the Roman k-domatic number of G, denoted by dkR(G). Note that the Roman 1-domatic number dlR(G) is the usual Roman domatic number dR(G). In this paper we initiate the study of the Roman k-domatic number in graphs and we present sharp bounds for dkR(G). In addition, we determine the Roman k-domatic number of some graphs. Some of our results extend those given by Sheikholeslami and Volkmann in 2010 for the Roman domatic number. Let k be a positive integer. A Roman k-dominating function on a graph G is a labeling f : V(G) → {0, 1, 2} such that every vertex with label 0 has at least k neighbors with label 2. A set {f1, f2,..., fd} of distinct Roman k-dominating functions on G with the property that ∑di=1 fi(v) ≤ 2 for each v C V(G), is called a Roman k-dominating family (of functions) on G. The maximum number of functions in a Roman k-dominating family on G is the Roman k-domatic number of G, denoted by dkR(G). Note that the Roman 1-domatic number dlR(G) is the usual Roman domatic number dR(G). In this paper we initiate the study of the Roman k-domatic number in graphs and we present sharp bounds for dkR(G). In addition, we determine the Roman k-domatic number of some graphs. Some of our results extend those given by Sheikholeslami and Volkmann in 2010 for the Roman domatic number.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第10期1899-1906,共8页 数学学报(英文版)
关键词 Roman domination number Roman domatic number Roman k-domination number Ro- man k-domatic number Roman domination number, Roman domatic number, Roman k-domination number, Ro- man k-domatic number
  • 相关文献

参考文献10

  • 1Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
  • 2West, D. B.: Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
  • 3Zelinka, B.: On k-ply domatic numbers of graphs. Math. Slovaka, 34, 313 318 (1984).
  • 4Kammerling, K., Volkmann, L.: The k-domatic number of a graph. Czech. Math. J., 59(134), 539-550 (2009).
  • 5Kammerling, K., Volkmann, L.: Roman k-domination in graphs. J. Korean Math. Soc., 46, 1309 1318 (2009).
  • 6Stewart, I.: Defend the Roman Empire. Sci. Amer., 281(6), 136-139 (1999).
  • 7Revelle, C. S., Rosing, K. E.: Defendens imperium romanum: a classical problem in military strategy. Amer. Math. Monthly, 107(7), 585-594 (2000).
  • 8Cockayne, E. J., Dreyer, P. A., Jr., Hedetniemi, S. M., et al.: Roman domination in graphs. Discrete Math., 278, 11-22 (2004).
  • 9Chambers, E. W., Kinnersley, B., Prince, N., et al.: Extremal problems for Roman domination. SIAM J. Discrete Math., 23, 1575-1586 (2009).
  • 10Sheikholeslami, S. M., Volkmann, L.: The Roman domatic number of a graph. Appl. Math. Lett., 23, 1295-1300 (2010).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部