The Fejer-Riesz Inequality for the Besov Spaces
被引量:1
The Fejer-Riesz Inequality for the Besov Spaces
摘要
A Fejer Riesz inequality for the weighted Besov spaces Bp,q is given. Some characteriza- tions of functions in Bp.q in terms of their Taylor coefficients are obtained.
A Fejer Riesz inequality for the weighted Besov spaces Bp,q is given. Some characteriza- tions of functions in Bp.q in terms of their Taylor coefficients are obtained.
参考文献10
-
1Fejer, L., Riesz, F.: Uber einige funktionentheoretische Ungleichungen. Math. Zeitschrift, 11, 305-314 (1921).
-
2Hardy, G., Littlewood, J., Polya, G.: Inequalities, Cambridge Univ. Press, London-New York, 1934.
-
3Huber, A.: On all inequality of Fejer and Riesz. Ann. of Math., 63, 572-587 (1956).
-
4Shield, A.: An analogue of the Fejer Riesz theorem for the Dirichlet space. In: Proceedings of Conference on Harmonic Analysis in honour of Antoni Zygmund (W. Beckner et el. eds.), II, 1983, 810-820.
-
5Soykan, Y.: An inequality of Fejer Riesz type. Cankaya Universitesi Fen-Edebiyat Fakiitesi, Journal of Arts and Sciences, 5, 51-60 (2006).
-
6Holland, F., Welsh, D.: Growth estimates for functions in the Besov spaces Ap. Pro. Roy. Irish Acad., 88A, 1-18 (1988).
-
7Mateljevie, M., Pavlovic, M.: LP-behaviour of power series with positive coefficients and Hardy spaces. Proc. Amer. Math. Soc., 87, 309-316 (1983).
-
8Duren, P.: Theory of Hp Spaces, Academic Press, New York-London, 1970.
-
9Zhao, R.: On a general family of function spaces. Ann. Acad. Sci. Fenn. Math. Diss, 105, 1-56 (1996).
-
10Zygmund, A.: Trigonometric Series, Vol. I, Cambridge Univ. Press, New York, 1968.
同被引文献1
-
1LI Hao 1 , WULAN Hasi 1, & ZHOU JiZhen 1,2 1 Department of Mathematics, Shantou University, Shantou 515063, China,2 School of Sciences, Anhui University of Science and Technology, Huainan 232001, China.Lipschitz spaces and Q_K type spaces[J].Science China Mathematics,2010,53(3):771-778. 被引量:2
-
1缪捷.BMOA中泰勒系数为正的函数的特征[J].杭州大学学报(自然科学版),1993,20(1):14-19.
-
2李红光.某类柯西变换的一点注记[J].怀化学院学报,2009,28(8):23-24.
-
3胡克.复合指数函数泰勒系数之不等式[J].抚州师专学报,1994,13(1):1-9.
-
4宋柏生.叠函数的泰勒展开式[J].东南大学学报(自然科学版),1994,24(1):42-47.
-
5乌兰哈斯.混合范数空间中函数的Taylor系数[J].数学杂志,1994,14(2):227-232. 被引量:1
-
6夏佳荣.混合模空间函数表示及泰勒系数[J].杭州师范大学学报(自然科学版),2001,5(4):19-20.
-
7肖建斌.H^(p,α)空间的Hardy-Littlewood定理[J].数学进展,1995,24(2):139-144. 被引量:7
-
8袁力.在EXCEL电子表格中计算多项式及其导数值[J].曲靖师范学院学报,1999,19(3):28-30.
-
9杨云昭,徐超,吴妙章.考虑粘弹性材料频变特性的复合结构频率响应分析[J].固体力学学报,2015,36(S1):105-110. 被引量:2