期刊文献+

The Arc Distortion in QH Inner ψ-uniform (or Convex) Domains in Real Banach Spaces

The Arc Distortion in QH Inner ψ-uniform (or Convex) Domains in Real Banach Spaces
原文传递
导出
摘要 Let D and D' be domains in real Banach spaces of dimension at least 2. The main aim of this paper is to study certain arc distortion properties in the quasihyperbolic metric defined in real Banach spaces. In particular, when D' is a QH inner C-uniform domain with C being a slow (or a convex domain), we investigate the following: For positive constants c, h, C, M, suppose a homeomorphism f : D → D' takes each of the 10-neargeodesics in D to (c, h)-solid in D'. Then f is C-coarsely M- Lipschitz in the quasihyperbolic metric. These are generalizations of the corresponding result obtained recently by Viiisiilg. Let D and D' be domains in real Banach spaces of dimension at least 2. The main aim of this paper is to study certain arc distortion properties in the quasihyperbolic metric defined in real Banach spaces. In particular, when D' is a QH inner C-uniform domain with C being a slow (or a convex domain), we investigate the following: For positive constants c, h, C, M, suppose a homeomorphism f : D → D' takes each of the 10-neargeodesics in D to (c, h)-solid in D'. Then f is C-coarsely M- Lipschitz in the quasihyperbolic metric. These are generalizations of the corresponding result obtained recently by Viiisiilg.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第10期2039-2050,共12页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant No. 11071063), Tianyuan Foundation (Grant No. 10926068) and Scientific Research Fund of Hunan Provincial Education Department (Grant No. 09C635)Acknowledgements The authors thank the referee very much for his (or her) careflfl reading of this paper and many useful suggestions and the support of the Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hu'nan Province.
关键词 Uniform domain QH C-uniform domain inner uniform domain QH inner C-uniform domain convex domain quasihyperbolic geodesic neargeodesic QUASICONVEXITY real Banach space Uniform domain, QH C-uniform domain, inner uniform domain, QH inner C-uniform domain, convex domain, quasihyperbolic geodesic, neargeodesic, quasiconvexity, real Banach space
  • 相关文献

参考文献19

  • 1Gehring, F. W., Palka, B. P.: Quasiconformally homogeneous domains. J. Analyse Math., 30, 172-199 (1976).
  • 2Vgisala, J.: Quasihyperbolic geodesics in convex domains. Results Math., 48, 184-195 (2005).
  • 3Gehring, F. W., Osgood, B. G.: Uniform domains and the quasi-hyperbolic metric, J. Analyse Math., 36, 50-74 (1979).
  • 4Martin, G. J.: Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the hyperbolic metric. Trans. Amer. Math. Soc., 29:1, 169-191 (1985).
  • 5Vaisala, J.: The free quasiworld, quasiconformal and related maps in Banach spaces. Banach Center Publ., 48, 55-118 (1999).
  • 6Vaisala, J.: Free quasiconformality in Banach spaces. I. Ann. Acad. Sci. Fenn. Ser. A I Math., 15,355-379 (1990).
  • 7Vaisala, J.: Free quasiconformality in Banach spaces. II. Ann. Acad. Sci. Fenn. Ser. A I Math., 16, 255-310 (1991).
  • 8Vaisala, J.: Uniform domains. Tohoku Math. J., 40, 101-118 (1988).
  • 9Vaisala, J.: Relatively and inner uniform domains. Conformal geom. Dyn., 2, 56-88 (1998).
  • 10Martio, O.: Definitions of uniform domains. Ann. Acad. Sci. Fenn. Ser. A I Math., 5, 197-205 (1980).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部