期刊文献+

纳米氧化铝颗粒增强铜-碳基复合材料的磨损性能 被引量:1

Abrasion properties of nano-sized Al_2O_3 particles reinforced Cu-C matrix composites
下载PDF
导出
摘要 用MA技术制备了C体积分数为10%的Cu-C固溶体粉体,用溶胶-凝胶(sol-gel)烧结技术制备了平均尺寸为12 nm的γ-Al2O3颗粒和用SPS方法制备了纳米Al2O3颗粒增强Cu-C固溶体基复合材料。采用X射线衍射仪对MA粉体、干凝胶和煅烧粉体进行了物相分析;通过JSM-5500LV型扫描电镜对磨损表面形貌进行观察分析并分析其磨损机制;使用MG-2000型高温摩擦磨损试验机对制备的复合材料进行了干摩擦实验并测定其磨损量。结果表明:纳米氧化铝颗粒体积分数及磨损载荷对复合材料摩擦磨损特性有显著影响,纳米氧化铝的体积分数从0%增加到2%,Cu基复合材料的磨损量从6.2 mg降到2.1 mg。 Cu-10vol%C powder mixture was fabricated by Mechanical Alloy(MA) technology,nano-sized γ-Al2O3 grains(average size 12 nm) were synthesized by sol-gel-sintered technology and nano-sized Al2O3 particles reinforced Cu-C matrix composites were fabricated by Spark Plasma Sintering(SPS) method.The crystalline structure of powders and size of Al2O3 particles were determined by X-ray diffraction.The morphologies of wear surfaces were observed by SEM particles.The dry sliding wear test is carried out on MG-2000 high-temperature wear tester to research tribological properties of composites prepared.The results show that the volume fraction and applied load have significant influence on as-fabricated composites.As the volume fraction of nano-sized Al2O3 particles increases from 0 % to 2 %,the abrasion mass of as-fabricated composites decreases from 6.2 mg to 2.1 mg.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第5期1305-1309,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2009AA044403)
关键词 复合材料 纳米AL2O3 Cu-C固溶体 摩擦性能 composites nano-sized Al2O3 Cu-C solid solution tribological property
  • 相关文献

参考文献14

二级参考文献21

  • 1冉旭,刘勇兵,闫海峰,刘学然,安健.纳米Cu粉末的放电等离子烧结[J].材料热处理学报,2005,26(2):27-30. 被引量:4
  • 2熊焰,傅正义,王玉成.放电等离子烧结技术制备透明AlN陶瓷[J].硅酸盐学报,2005,33(6):753-757. 被引量:7
  • 3尹延国,刘君武,郑治祥,郑玉春,刘焜,解挺.石墨对铜基自润滑材料高温摩擦磨损性能的影响[J].摩擦学学报,2005,25(3):216-220. 被引量:74
  • 4An J,Liu Y B,Lu Y.Dry sliding wear behavior of hot extruded Al-Si-Pb alloys in the temperature range 25-200 ℃[J].Wear,2004,256:347-385.
  • 5Liu Y B,Lim S C,Ray S.Friction and wear of aluminum-graphite composites:The smearing process of graphite during sliding[J].Wear,1992,159:201-205.
  • 6Barner A,Mundim K C,Ellis D E,et al.Microstructure of Cu-C interface in Cu-based metal matrix composite[J].Sensors and Actuators,1999,74:86-90.
  • 7Hansen.Constitution of binary alloys[M].New York:McGraw-Hill,1958.353-358.
  • 8Yamane T,Okubo H,Hisayuki K,et al.Solid solubility of carbon in copper mechanically alloyed[J].J Mater Sci lett,2001,20:259-260.
  • 9Marques M T,Correia J B,Conde O.Carbon solubility in nanostructured copper[J].Scripta Materialia,2004,50:963-967.
  • 10Yamane T,Okubo H,Oki N,et al.Consolidation of mechanically alloyed powder mixture of Cu-Zn alloy and graphite[J].Mater Sci Eng A,2003,350:173-178.

共引文献23

同被引文献30

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部