期刊文献+

基于AC-4的动态值启发式约束满足问题求解算法 被引量:3

AC-4 based dynamic value ordering heuristic algorithm for solving constraint satisfaction problems
下载PDF
导出
摘要 通过对弧相容算法AC-4的研究,提出了基于AC-4的动态值启发式约束满足问题求解算法MAC-DMSV。算法充分利用AC-4在初始化阶段建立的计数器信息,选择计数最大者为优先实例化的值。将此值启发式加入MAC算法之中,在MAC的相容性检查时,更新计数器的值,实现了动态值启发式。实验结果表明,MAC-DMSV算法比MAC和BT+MPAC算法具有更高的求解效率。 By studying the arc consistency algorithm,AC-4,a dynamic value ordering heuristic algorithm,MAC-DMSV,is proposed for solving constraint satisfaction problems based on AC-4.This algorithm uses the counter information created in the initialization of the AC-4 algorithm,and chooses the biggest counter value as the prior instantiation value.Then the ordering heuristic of this value is added to MAC,and the values of the counters are updated when checking the consistency.So the dynamic value ordering heuristic can be realized.The algorithm is tested by random problems and benchmark,and results show that the efficiency of MAC-DMSV is higher than that of MAC and BT+MPAC.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第5期1378-1382,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60773097 60873148 60973089) 吉林省科技发展计划项目(20071106)
关键词 人工智能 动态值排序 约束满足问题 artificial intelligence dynamic value ordering constraint satisfaction problems
  • 相关文献

参考文献7

  • 1Bessiere C, Deburyne R. Theoretical analysis of sin- gleton are consistency[C]//Proceedings of ECAI'04 Workshop on Modelling and Solving Problems with Constraints, Valencia Spain, 2004.
  • 2Mackworth A K. Consistency in networks of rela- tions [J]. Artificial Intelligence, 1977, 8 ( 1 ) : 118- 126.
  • 3Mohr R, Henderson T C. Arc and path consistency revisited[J]. Artificial Intelligence, 1986, 28 (2): 225-233.
  • 4Sabin D, Freuder E C. Contradicting conventional wisdom in constraint satisfaction[C]// Proceedings of the Second International Workshop on Principles and Practice of Constraint Programming, London, UK,1994.
  • 5孙吉贵,朱兴军,张永刚,李莹.一种基于预处理技术的约束满足问题求解算法[J].计算机学报,2008,31(6):919-926. 被引量:11
  • 6Li Zhan-shan, Du Hui-ying, Xing Shi-mei, et al. Value ordering heuristic for solving algorithm based on the AC-4 algorithm[C] //The 2nd International Workshop on Intelligent Systems and Applications, Wuhan,China,2009.
  • 7Prosser P, Stergiou K, Walsh T. Singleton consis- tencies[C]//Proceedings of CP'00, Singapore 2000.

二级参考文献20

  • 1Gent Ian P, Macintyre Ewan, Prosser Patrick, Smith Barbara M, Walsh Toby. Random constraint satisfaction flaws and structure. Journal of Constraints, 2001, 6(4) : 345- 372.
  • 2Xu Ke, Li Wei. Exact phase transitions in random constraint satisfaction problems. Journal of Artificial Intelligence Research, 2000, 12: 93-103.
  • 3Xu Ke, Boussemart Frederic, Hemery Fred, Lecoutre Christophe. A simple model to generate hard satisfiable instances//Proceedings of the IJCAI. Edinburgh, Scotland,2005. 337-342.
  • 4Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
  • 5Patrick Prosser. Hybrid algorithms for the constraint satisfaction problems. Computational Intelligence, 1993, 9 (3) : 268- 299.
  • 6Ginsberg M L. Dynamic backtracking. Artificial Intelligence, 1993, 1: 25-46.
  • 7Sabin Daniel, Freuder E C. Contradicting conventional wis dom in constraint satisfaction//Borning Alan. Proceedings of the 2nd International Workshop on Principles and Practice of Constraint Programming. USA, 1994: 10-20.
  • 8Mackworth A K. Consistency in networks of relations. Artificial Intelligence, 1977, 8(1): 99-118.
  • 9Mohr R, Henderson T C. Arc and path consistency revised. Artificial Intelligence, 1986, 28(2): 225 -233.
  • 10Bessiere Christian, Régin Jean Charles. Refining the basic constraint propagation algorithm//Proeeedings of the 17th International Joint Conference on Artificial Intelligence. Seattle WA, Morgan Kaufmann, 2001:309-315.

共引文献10

同被引文献36

  • 1Ginsberg M L. Dynamic Backtracking[J]. Journal of Artificial Intelligence Research, 1993, 1(1):25-46.
  • 2Baker A B. The Hazards of Fancy Backtracking[C]//Proceedings of the 12th National Conference on Artificial Intelligence. Seattle, USA: [s. n.], 1994: 288-293.
  • 3Stallman R M, Sussman G J. Forward Reasoning and Dependency-directed Backtracking in a System for Computer- aided Circuit Analysis[J]. Artificial Intelligence, 1977, 9(1): 135- 146.
  • 4Karypis G, Kumar V. Multilevel Algorithms for Multi-constraint Graph Partitioning[C]//Proceedings of 1998 ACM/IEEE Confe- rence on Supercomputing. Washington D. C., USA: ACM Press, 1998.
  • 5Salido M A, Barber F. Distributed CSPs by Graph Partitioning[J]. Applied Mathematics and Computation, 2006, 183(1): 491-498.
  • 6WALTZ D L. Understanding line drawings of scenes with shadows [M]. [S. 1. ] :McGraw-Hill,1975.
  • 7MACKWORTH A K. Consistency in networks of relations [ J ]. Artifi- cial Intelligence, 1977,8 ( 1 ) :99-118.
  • 8MOHR R, HENDERSON T C. Arc and path consistency revisited [ J ]. Artificial Intelligence, 1986,28 (2) :225- 233.
  • 9BESSIERE C. Arc consistency and arc consistency again [ J ]. Artifi- cial Intelligence, 1994,65( 1 ) : 179-190.
  • 10BESSIERE C, FREUDER E C, REGIN J C. Using inference to re- duce arc consistency computation [ C ]//Proc of International Joint Conference on Artificial Intelligence. 1995.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部