期刊文献+

2~5μm InAs/GaSb超晶格红外探测器 被引量:1

2-5 μm InAs/GaSb superlattices infrared photodetector
下载PDF
导出
摘要 采用分子束外延方法在GaSb和GaAs衬底上生长了不同周期厚度的InAs/GaSb高质量II型能带结构超晶格红外探测器,其探测波长覆盖2~5μm红外波段。采用高分辨透射电子显微镜、原子力显微镜、X射线衍射测试、室温与低温光电流响应谱及室温与低温光荧光谱等多种测试手段检验了分子束外延生长在不同衬底上的超晶格材料质量与光学质量。该材料用于制造2~5μmGaAs基与GaSb基InAs/GaSb超晶格红外探测器。在77K温度下,2μm波段GaAs基InAs/GaSb超晶格红外探测器探测率为4×10^9cm·Hz^1/2/w,5μm波段GaSb基InAs/GaSb超晶格红外探测器探测率为1.6×10^100cm·Hz^1/2/W。 High quality InAs/GaSb type-II band alignment superlattices infrared photodetectors with different InAs thicknesses were grown on GaSb and GaAs substrates by molecular beam epitaxy (MBE). The detection wavelengths of these InAs/GaSb SLs infrared detectors were 2-5 μm. The material and optical qualities of InAs/ GaSb superlattices on different substrates by MBE were characterized by different measurement methods, including high resolution transmission electron microscope (HRTEM), atomic force microscope (AFM), X-ray diffraction (XRD), low temperature (LT) and room temperature (RT) photo response spectrum and LT and RT photoluminescence (PL) spectrum. Then 2-5 μm GaAs and GaSb based infrared photodetectors were fabricated by these InAs/GaSb type-II band alignment superlattices materials. The detectivity of the 2 μm GaAs based InAs/GaSb SLs photodetector is 4×10^9cm·Hz^1/2/W at 77K and that of the 5 μm GaSb based InAs/GaSb SLs photodetector is 1.6×10^9cm·Hz^1/2/W at the same temperature.
出处 《红外与激光工程》 EI CSCD 北大核心 2011年第8期1403-1406,共4页 Infrared and Laser Engineering
基金 国家自然科学基金(60607016 60625405)
关键词 INAS/GASB超晶格 红外探测器 分子束外延 InAs/GaSb superlattices infrared photodetector molecular beam epitaxy
  • 相关文献

参考文献2

二级参考文献28

  • 1陈伯良.红外焦平面成像器件发展现状[J].红外与激光工程,2005,34(1):1-7. 被引量:54
  • 2Johnson J L, Samoska L A., Gossard A C., Merz J, Jack M D, Chapman G R, Baumgratz B A, Kosai K and Johnson S M 1996 J. Appl. Phys. 80 1116.
  • 3Fuchs F, Weimar U, Pletschen W, Schmitz J, Ahlswede E, Walther M, Wagner J and Koidl P 1997 Appl. Phys. Lett. 71 3251.
  • 4Rehm R, Walther M, Schmitz J, FleiBner J, Fuchs F, Ziegler J and Cabanski W 2005 SPIE 5957 595701.
  • 5Zhang X B, Ryou J H, Dupuis R D, Petschke A, Mou S, Chuang S L, Xu C and Hsieh K C 2006 Appl. Phys. Lett. 88 072104.
  • 6Rodriguez J B, Christol P, Ouvrard A, Chevrier F, Grech P and Joullie A 2005 Electron. Left. 41 362.
  • 7Mohseni H, Tahraoui A, Wojkowski J, Razeghi M, Brown G J, Mitchel W C and Park Y S 2000 Appl. Phys. Lett. 77 1572.
  • 8Mohseni H, Wojkowski J, Razeghi M, Brown G and Mitchel W 1999 IEEE J. Quantum Electron. 35 1041.
  • 9Blank H, Thomas M, Wong K and Kroemer H 1996 Appl. Phys. Lett. 69 2080.
  • 10HaoRT, XuYQ, ZhouZ Q, RenZW, NiHQ, HeZ H and Niu Z C 2007 J. Phys. D: Appl. Phys. 40 1080.

共引文献3

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部