期刊文献+

中红外ZBLAN光纤拉曼激光器的理论分析与设计 被引量:3

Theoretical analysis and design of mid-infrared ZBLAN fiber Raman laser
下载PDF
导出
摘要 根据ZBALN光纤拉曼激光器的结构,理论分析了中红外ZBLAN光纤级联拉曼激光器运行方式并建立了泵浦光和斯托克斯光的非线性耦合方程组。基于该方程组,对用高功率掺铥光纤激光器泵浦ZBLAN光纤产生拉曼频移时泵浦光和斯托克斯光在光纤中的演化过程进行了仿真。为了提高激光器性能,对光纤长度、输出耦合器反射率、泵浦功率等激光器参数及其对激光器性能的影响进行了数值分析。数值计算结果表明,用掺铥光纤激光器泵浦ZBLAN光纤可以以较高的光光转换效率产生更长波长的拉曼激光。不同的光纤长度和输出耦合器反射率相互影响,并共同影响激光器的性能。根据以上分析,最终获得了高性能的ZBLAN光纤拉曼激光器的优化参数。 According to the ZBLAN fiber Raman laser structure of mid-infrared ZBLAN fiber Raman laser, was theoretically analyzed and the nonlinear coupling the operation mode of equations between the pump and Stokes light were constructed. Based on the equations, the evolution of the pump and Stokes light in ZBLAN fiber pumped by Tm-doped fiber laser was simulated. In order to achieve better performance, the effects of parameters of ZBLAN fiber Raman laser including fiber length, reflectivity of output coupler and pump power on the performance of laser were numerically analyzed. The results show that high power long wavelength Raman laser can be generated with higher optical to optical conversion efficiency by ZBLAN fiber pumped by Tm-doped fiber laser. The fiber length and reflectivity of output coupler influence each other, and affect the laser performance together. Based on the above analysis, the optimized parameters of ZBLAN fiber Raman laser are obtained finally.
出处 《红外与激光工程》 EI CSCD 北大核心 2011年第8期1432-1437,共6页 Infrared and Laser Engineering
基金 中国博士后基金(20090451417)
关键词 光纤拉曼激光器 中红外光纤激光器 ZBLAN光纤 拉曼效应 非线性耦合方程组 fiber Raman laser nonlinear coupled mid-infrared fiber laser ZBLAN fiber Raman effect equations
  • 相关文献

参考文献13

  • 1Aggarwal I D, Shaw L B, Sanghera J S. Chalcogenide glass fiber-based MID-IR sources and applications[C]//SPIE, 2007, 6453: 645312.
  • 2卞进田,聂劲松,孙晓泉.中红外激光技术及其进展[J].红外与激光工程,2006,35(z3):188-193. 被引量:17
  • 3France P W, Drexhage M G, Parker J M, et al. Fluoride Glass Optical Fibres[M]. Blackie: Glasgow, 1990.
  • 4Shaw L B, Cole B, Thielen P A, et al. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber [J]. IEEE J Quantum Electron, 2001, 48(9): 1127-1136.
  • 5Jackson S D. 8.8 W diode-cladding-pumped Tm^3+, Ho^3+- doped Fluoride fibre laser [J]. Electron Lett, 2001, 37(13): 821-822.
  • 6Jackson S D, King T A, Pollnau M. Diode-pumped 1.7 W erbium 3 μm fiber laser[J]. Opt Lett, 1999, 24(16): 1133- 1135.
  • 7Faucher D, Bemier M, Caron N, et al. Erbium-doped all-fiber laser at 2.94 μm[J]. Opt Lett, 2009, 34(21): 3313-3315.
  • 8Hayward R A, Clarkson W A, Turner P W, et al. Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 μm [J]. Electron Lett, 2000, 36(8): 711-712.
  • 9Schneider J, Carbonnier C, Unrau U B. Characterization of a Ho3 +-doped fluoride fiber laser with a 3.9μm emission wavelength[J]. Appl Opt, 1997, 36(33): 8595-8600.
  • 10Mizunami T, Iwashita H, Takagi K. Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers[J]. Opt Commun, 1993, 97(3): 74-78.

二级参考文献9

共引文献16

同被引文献17

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部