期刊文献+

基于Hough树林的空间有形目标特征训练与检测识别方法 被引量:1

Space shape object feature training and detection and recognition method based on Hough forest
下载PDF
导出
摘要 随着空间飞行器利用率的不断提高,各国开始关注于空间目标的监视问题。如何对空间有形目标进行准确的分类与定位识别是目前关注的难点之一。针对空间目标的特征提取与识别定位问题展开研究,提出了一种基于Hough树林的空间目标探测识别方法。首先,通过广义的Hough变换,使用独立的目标局部的探测识别对全局目标可能位置中心进行投票。然后,用与Hough图像极大值相对应的探测识别假设对局部特征的投票进行汇总,继而通过训练建立起Hough树林。进一步地,在传统码表存储局部特征投票信息的理论基础上,使用所建立的Hough树林进行了天基目标的探测识别。实验表明,此方法可以在不同的探测距离上对多类空间目标进行较好的探测识别。 As constant increasing utilization of space-aircraft, more and more countries begin to focus on space object surveillance. But how to precisely classify and localize for space shape object is one of difficulties. The problems of space object feature extraction, recognition and localization were studied and a space object detection and recognition method based on Hough forest was proposed. The method was accomplished via generalized Hough transform, in which voting for the possible locations of centroid of whole space objects with the detection of object parts; then these part of feature votes were accumulated with the recognition hypothesis which corresponded to the Hough image, and Hough forest was built by training stage. Furthermore, based on application of traditional codebook theory in saving feature-voting information, the space-based object detection and recognition were realized by using the established Hough forest. Many experiments prove that the method can improve detection and recognition performances for multi-classes space objects at different exploration distances.
出处 《红外与激光工程》 EI CSCD 北大核心 2011年第8期1582-1588,共7页 Infrared and Laser Engineering
基金 国家自然科学青年基金(60802043)
关键词 空间有形目标 目标的检测与识别 训练码表 Hough树林 尺度空间 space shape object object detection and recognition training codebook Hough forest scale space
  • 相关文献

参考文献3

二级参考文献18

共引文献12

同被引文献5

  • 1Alexe Bogdan, Deselaers Thomas, Ferrari Vittorio. Measuring the objectness of image windows [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(11): 2189-2202.
  • 2Wang Xiaoyu, Yang Ming, Zhu Shenghuo, et al. Regionlets for generic object detection [C]//Computer Vision (ICCV), 2013 IEEE International Conference on IEEE, 2013: 17-24. (in Chinese).
  • 3Cheng Mingming, Zhang Ziming, Lin Wenyan, et al. BING: binarized normed gradients for objectness estimation at 300fps [C]//Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on IEEE, 2014. (in Chinese).
  • 4Gall Juergen, Lempitsky Victor. Class-specific Hough Forests for Object Detection [M]// Decision Forests for Computer Vision and Medical Image Analysis. London, Springer: 2013: 143-157.
  • 5Gall Juergen, Yao Angela, Razavi Nima, et al. Hough forests for object detection, tracking, and action recognition [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011, 33(11): 2188-2202.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部