期刊文献+

均衡化概率模型及其在特征匹配中的应用

Balanced probabilistic model and its application on feature matching
下载PDF
导出
摘要 针对计算机视觉研究中最基本的特征匹配问题,提出了一种新的特征匹配算法,通过对匹配的概率模型中邻接矩阵的均衡化分析完成匹配过程。该算法根据待匹配特征点的几何关联性,建立匹配的概率模型,并利用一种有效的双向均衡方法,使得待匹配特征点的关联权重达到平衡,从而增强了匹配的区分度和准确性。采用重启动的随机游走(randomwalkswith restart,RWR)方法对概率模型进行求解,结合具有约束限制的时序方法获取最优匹配集。实验结果表明,与同类方法相比,该算法具有更高的匹配准确率,且适用于多种匹配场合。 Aiming at the feature matching,the basic problem of computer vision,a new algorithm of feature matching is proposed by balancing analysis of adjacency matrix of the matching model in a probabilistic framework.The approach according to all the interaction of the two candidate feature point sets and then a probabilistic model is established,then using an efficient method for bidirectional,which make all the relevance weight balancing,and it improves the discriminative and accuracy performance of matching.Finally,the probabilistic model is solved using random walks with restart(RWR),and correct matches are recovered by imposing a sequential method with mapping constraints in a simple way.Compared with the similar algorithm,the method is accurate in terms of matching rate in various matching applications.
作者 艾春璐 陈莹
出处 《计算机工程与设计》 CSCD 北大核心 2011年第9期3106-3109,共4页 Computer Engineering and Design
基金 中国博士后科学基金项目(20080430161) 中央高校基本科研业务费专项基金项目(JUSRP10926)
关键词 概率模型 重启动的随机游走 均衡化 最优匹配 特征匹配 probabilistic model random walks with restart(RWR) balancing optimal matching feature matching
  • 相关文献

参考文献15

  • 1Nail S K,Murthy C A.Distinct multicolored region descriptors for object recognition [J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(7): 1291-1296.
  • 2Chen J,Tian J, Lee N,et al.A partial intensity invariant feature descriptor for multimodal retinal image registration[J].IEEE:Bio- medical Engineering,2010,57(7): 1707-1718.
  • 3Gao T, Liu Z G,Zhang J.Feature particles tracking for the moving obj ect[J]. Studies in Computational Intelligence,2009,214:39-44.
  • 4Do C M,Javidi B.3D integral imaging reconstruction of occluded objects using independent component analysis-based k-means clustering[J].Journal of Display Technology,2010,6(7):257-262.
  • 5Kim T H,Lee K M,Lee S U.A probabilistic model for correspondence problems using random walks with restart[C].Xi'an:Proc of the 9th Asian Conference on Computer Vision,2009.
  • 6Zass R,Shashua A.Probabilistic graph and hypergraph matching [C].Anchorage,AK:IEEE Conference on Computer Vision and Pattern Recognition,2008.
  • 7Yaghi H,Krim H.Probabilistic graph matching by canonical decomposition[C].San Diego,CA:15th IEEE International Conference on Image,2008.
  • 8Lowe D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60 (2):91-110.
  • 9Mikolajczyk K, Schmid C.Scale & affine invariant interest point detectors[C].Hingham,MA,USA:Kluwer Academic Publishers, 2004.
  • 10Kannala J,Rahtu E,Brandt S S,et al.Object recognition and segmentation by non-rigid quasi-dense matching [C]. Anchorage, AK:IEEE Conference on Computer Vision and Pattern Recognition,2008.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部