期刊文献+

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED
下载PDF
导出
摘要 We propose a theoretical scheme for realizing the general conditional phase shift gate of charge qubitssituated in a high-Q superconducting transmission line resonator.The phase shifting angle can be tuned from 0 to 2n bysimply adjusting the qubit-resonator detuning and the interaction time.Based on this gate proposal,we give a detailedprocedure to implement the three-qubit quantum Fourier transform with circuit quantum electrodynamics (QED).Acareful analysis of the decoherence sources shows that the algorithm can be achieved with a high fidelity using currentcircuit QED techniques. We propose a theoretical scheme for realizing the general conditional phase shift gate of charge qubits situated in a high-Q superconducting transmission line resonator. The phase shifting angle can be tuned from 0 to 27r by simply adjusting the qubit-resonator detuning and the interaction time. Based on this gate proposal, we give a detailed procedure to implement the three-qubit quantum Fourier transform with circuit quantum eleetrodynamics (QED). A careful analysis of the decoherence sources shows that the algorithm can be achieved with a high fidelity using current circuit QED techniques.
机构地区 College of Science
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第9期435-439,共5页 理论物理通讯(英文版)
基金 Supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No. 200524 the Program for New Century Excellent Talents of China under Grant No. 06-0920
关键词 量子比特 变换电路 QED 相移 傅立叶 FOURIER 模拟 超导传输线 circuit QED, conditional phase shift gate, quantum Fourier transform
  • 相关文献

参考文献21

  • 1P.W. Shor, SIAM. J. Comp. 26 (1997) 1484.
  • 2A.Y. Kitaev, arXiv:9511026 [quant-ph].
  • 3D.R. Simon, SIAM. J. Comp. 26 (1997) 1474.
  • 4D. Coppersmith, IBM Research Report RC (1994) 19642.
  • 5L.P. Fu, J. Luo, L. Xiao, and X.Z. Zeng, Appl. Magn. Reson. 19 (2000) 153.
  • 6Y.S. Weinstein, M.A. Pravia, E.M. Fortunato, S. Lloyd, and D.G. Cory, Phys. Rev. Lett. 86 (2001) 1889.
  • 7L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, and I.L. Chuang, Nature (London) 414 (2001) 883.
  • 8M.O. Scully and M.S. Zubairy, Phys. Rev. A 65 (2002) 052324.
  • 9J. Clarke and F.K. Wilhelm, Nature (London) 453 (2008) 1031.
  • 10A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, and R.J. Schoelkopf, Phys. Rev. A 69 (2004) 062320.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部