期刊文献+

Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number
下载PDF
导出
摘要 We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dlmenslonal FLiemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第9期490-498,共9页 理论物理通讯(英文版)
基金 Supported by the Science Foundations of LCP and CAEP under Grant Nos. 2009A0102005 and 2009B0101012 National Natural Science Foundation of China under Grant Nos. 11075021, 11074300, and 11074303 National Basic Research Program (973 Program) under Grant No. 2007CB815105 Fundamental Research Funds for the Central University under Grant No. 2010YS03 Technology Support Program of LangFang under Grant Nos. 2010011029/30/31 Science Foundation of NCIAE under Grant No. 2008-ky-13
关键词 lattice Boltzmann method flux limiter compressible flows Prandtl number 格子Boltzmann 可压缩流动 通量限制器 普朗特数 Couette流动 模型模拟 有限差分 数值耗散
  • 相关文献

参考文献38

  • 1S. Chapman and T. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, London (1970).
  • 2S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, New York (2001).
  • 3A. Xu, Europhys. Lett. 69 (2005) 214.
  • 4A. Xu, Europhys. Phys. Rev. E 71 (2005) 066706.
  • 5X. Pan, A. Xu, G. Zhang, and S. Jiang, Int. J. Mod. Phys. C 18 (2007) 1747.
  • 6Y. Gan, A. Xu, G. Zhang, X. Yu, and Y. Li, Physica A 387 (2008) 1721.
  • 7F. Chen, A. Xu, G. Zhang, Y. Gan, T. Cheng, and Y. Li, Commun. Theor. Phys. 52 (2009) 681.
  • 8Q. Li, Y. He, Y. Wang, and W.Q. Tao, Phys. Rev. E 76 (2(107) 056705.
  • 9Y. Wang, V. He, T. Zhao, G. Tang, and W. Tao, Int. J. Mod. Phys. C 18 (2007) 1961.
  • 10M. Watari and M. Tsutahara, Phys. Rev. E 67 (2003) 036306.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部