期刊文献+

独立变桨距控制策略研究 被引量:36

Strategies Study of Individual Variable Pitch Control
下载PDF
导出
摘要 为解决独立变桨距控制多输入多输出信号之间的耦合问题,侧重于研究独立变桨距的多变量控制技术。建立带卡尔曼滤波器的前馈–反馈线性二次高斯函数(linear quadraticgaussian function,LQG)最优控制,并对统一变桨距控制、独立变桨距控制的标量比例积分(proportional-integral,PI)控制、独立变桨距控制的多变量LQG控制3种情况下的载荷进行对比。结果表明:LQG最优独立变桨距控制比统一变桨距控制和传统的PI独立变桨距控制具有更好的减载效果,更适合大型风力发电机组。 In order to solve the coupling among the multiinput and multi-output signals in the thesis, multivariable control technology of individual pitch was researched. Feed forward- feedback linear quadratic gaussian function (LQG) optimal control with coleman filter was established, and loads were compared among the collective pitch control, scalar PI control of the individual pitch control and multivariable LQG control of the individual pitch control. The result shows that the LQG optimal individual pitch control has better effect of reducing loads than the unified pitch control and conventional PI control of the individual pitch control, so it is more suitable for large-scale wind turbine.
出处 《中国电机工程学报》 EI CSCD 北大核心 2011年第26期131-138,共8页 Proceedings of the CSEE
基金 "十一五"国家科技支撑计划重大项目(2006BAA01A03) "风电机组独立变桨距机构控制策略试验平台" 辽宁省教育厅(2008S169)~~
关键词 独立变桨距 控制策略 耦合 多变量控制 前馈-反馈线性二次高斯函数(linear QUADRATIC GAUSSIAN function LQG)最优控制 卡尔曼滤波器 载荷 individual pitch control strategies coupling multivariable control feed forward-feedback linear quadraticgaussian fimction optimal control coleman filter load
  • 相关文献

参考文献14

  • 1Trkhk S Z, Duran A. Progress and recent trends in wind energy[J]. Progress in Energy and Combustion Science, 2004, 30(5): 501-543.
  • 2Selvam K, Kan S, Wingerden J W, et al. Feedback-feedforward individual pitch control for wind turbine load reduction[J]. International Journal of Robust and Nonlinear Control, 2009, 19(1): 72-91.
  • 3Van Engelen T. Control design based on aero- hydroservo-elastic linear models from TURBU (ECN)[C]// Proceedings of the European Wind Energy Conference, Mila, Italy, 2007: 7-10.
  • 4Kallesoe B S. A low-order model for analysing effects of blade fatigue load control[J]. Wind Energy, 2006, 9(5): 421-436.
  • 5Van Engelen T, Schaak P. Oblique inflow model for assessing wind turbine controllers[C]//Proceedings of the 2^nd Conference on the Science of Making Torque from Wind, Denmark, 2007: 241-246.
  • 6Hansen M, Thomsen K, Fuglsang P, et al. Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments[J]. Wind Energy, 2006, 9(2): 179-191.
  • 7Bianchi F, Mantz R, Christiansen C. Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models[J] . Control Engineering Practice, 2005, 13(2): 247-255.
  • 8Stol K, Balas M. Periodic disturbance accommodating control for blade load mitigation in wind turbines [J]. Journal of Solar Energy Engineering, 2003, 125(4): 379-385.
  • 9Geyler M, Caselitz P. Individual blade pitch control design for load reduction on large wind turbines[C]// Proceedings of the European Wind Energy Conference, Italy, Milan, 2007.
  • 10Bossanyi E. Further load reductions with individual pitch control[J]. Wind Energy, 2005, 8(4): 481-485.

同被引文献278

引证文献36

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部