期刊文献+

低质量监控图像鲁棒性人脸超分辨率算法 被引量:4

Robust Super-resolution Algorithm for Low-quality Surveillance Face Images
下载PDF
导出
摘要 由于人对图像结构信息的理解对于像素值的噪声干扰具有极强的鲁棒功能,为了增强传统算法针对低质量监控图像的鲁棒性,提出一种基于人工形状语义模型的人脸超分辨率算法.该算法将形状描述成一系列面部特征点的组合,通过人工获取人脸图像形状语义信息,利用形状样本库构建超分辨率代价函数的正则约束项;将图像与形状的系数相关性用于统一重建误差项与形状正则项的变量,并将最速下降法用于优化求解.仿真和实际图像实验结果都表明,在主客观质量上,文中算法的性能都优于传统算法. Human understanding with image semantic information,especially structural information,is robust to the degraded pixel values.In order to enhance the robustness of traditional methods to low-quality surveillance images,we propose a face super-resolution approach using shape semantic model.This method describes the facial shape as a series of fiducial points on facial image.And shape semantic information of input image is obtained manually.Then a shape semantic regularization is added to the original objective function.According to the correlation of coefficients of image and shape,the variables of reconstruction fidelity term and shape regularization item are unified.And the steepest descent method is used to obtain the unified coefficient.Experimental results of simulation and real images indicate that the proposed method outperforms the traditional schemes significantly both in subjective and objective qualities.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第9期1474-1480,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60772106 60970160) 湖北省自然科学基金重点项目(2009CDA134) 公安部重点科技攻关计划(2008ZDXMHBST011)
关键词 人脸超分辨率 幻觉脸 主动形状模型 主成分分析 鲁棒性超分辨率 face super-resolution face hallucination active shape model principal component analysis robust super-resolution
  • 相关文献

参考文献13

  • 1Capel D, Zisserman A. Super resolution from multiple views using learnt image models [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2001, 2:627-634.
  • 2Gunturk B K, Batur A U, Altunbasak Y, et al. Eigenfacedomain super-resolution for face recognition [J].IEEE Transactions on Image Processing, 2003, 12(5): 597-606.
  • 3Wang X G, Tang X O. Hallucinating face by eigentransformation[J]. IEEE Transactions on Systems,Man, and Cybernetics, Part C: Applications and Reviews, 2005, 35(3): 425-434.
  • 4Chang H, Yeung D Y, Xiong Y M. Super resolution through neighbor embedding [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2004, 1:275-282.
  • 5张雪松,江静,彭思龙.人脸图像超分辨率的自适应流形学习方法[J].计算机辅助设计与图形学学报,2008,20(7):856-863. 被引量:7
  • 6Yang J C, Wright J, Huang T, et al. Image super-resolution as sparse representation of raw image patches [C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2008: 1-8.
  • 7Yang J C, Wright J, Huang T S, et al. Image super- resolution via sparse representation[J].IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
  • 8Liu C, Shum H Y, Freeman W T. Face hallucination: theory and practice[J].International Journal of Computer Vision, 2007, 75(1) : 115-134.
  • 9Freeman W T, Pasztor E C, Carmichael O T. Learning low-level vision [J]. International Journal of Computer Vision, 2000, 40(1): 25-47.
  • 10Cootes T F, Taylor C J, Cooper D H. Active shape models- their training and application[J]. Computer Vision and Image Understanding, 1995, 61(1): 38-59.

二级参考文献29

  • 1Stegmann M B. Analysis and segmentation of face images using point annotations and linear subspace techniques[R]. Anker Engelundsvej:Technical University of Denmark, IMM-REP-2002-22, 2002
  • 2Li F F, Fergus R, Perona P. Learning generative visual models from few training examples:an incremental Bayesian approach tested on 101 object categories [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, Washington D C, 2004: 178-178
  • 3Hardie R C, Barnard K J, Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images [J]. IEEE Transactions on Image Processing, 1997, 6(12):1621-1633
  • 4Elad M, Feuer A. Super-resolution reconstruction of image sequences [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(9): 817-834
  • 5Elad M, Feuer A. Restoration of a single superresolution image from several blurred noisy and undersampled measured images [J]. IEEE Transactions on Image Processing, 1997, 6(12): 1646-1658
  • 6Patti A J, Sezan I, Tekalp A M. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time [J]. IEEE Transactions on Image Processing, 1997, 6(8): 1064-1076
  • 7Schultz R R, Stevenson R L. Extraction of highresolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6):996-1011
  • 8Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution [J]. IEEE Computer Graphics and Applications, 2002, 22(2):56-65
  • 9Freeman W T, Pasztor E C, Carmichall O T. Learning low- level vision [J]. International Journal of Computer Vision, 2000, 40(1): 25-47
  • 10Hertzmann A, Jacobs C E, Oliver N, et al. Image analogies [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2001:327-340

共引文献6

同被引文献62

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部