期刊文献+

不依赖于连续性假设的Correspondence Manifold研究

Research on Correspondence Manifold without Continuous Constraint
下载PDF
导出
摘要 图像匹配是计算机视觉中的一个基本问题,现有方法一般基于极几何模型,在使用中往往存在效率不高和对有些错误匹配点无法剔除的问题,为此研究了图像匹配中的模型问题.首先通过分析图像对应点映射关系的特点及其在联合图像空间中所形成曲面的几何直观,给出了不依赖于连续性假设的对应流形(CM)定义;然后通过分析CM及其视图所体现的映射关系特点和完备性,直观地给出了基于对应函数的CM表征方案,据此将CM的学习归结为一般的函数回归问题;最后通过理论分析和实验方式探讨了CM模型相比于经典的极几何模型的优势.理论分析结果表明,CM模型在图像匹配关系的描述中给出的是充分必要约束,而极几何模型给出的是必要非充分约束;实际图像匹配的实验结果表明,基于CM的错误匹配剔除方法的准确性和稳健性比基于极几何模型的方法略好,且候选匹配中错误越多,CM的速度优势越明显. Image registration is a fundamental problem in computer vision,and the epipolar geometry constraint is the most popular model in it,which usually suffers from the efficiency problem and accuracy problem in applications.Therefore,this work focuses on the model designing problem in image registration.Firstly,by analyzing the characteristics of the mapping between corresponding points and the geometric properties of the surface formed by corresponding points in 4-dimentional joint image space,we introduced the concept of correspondence manifold(CM).Compared with the available method,the advantage of this definition is independent of the continuity hypothesis.Secondly,the concept correspondence view(CV) is introduced to describe the CM after studying the characteristics and completeness of the point mapping in CM and its upward views,based on which the estimation of CM can be converted into a regression problem.Finally,we compared the CM with the commonly used model epipolar geometry constraint theoretically and experimentally.The theoretical result is that CM is a sufficient and necessary constraint in correspondence problem,but epipolar geometry is a necessary but insufficient one.The experimental results on real images show that CM-based mismatch removing method is more accurate,robust and efficient than that based on epipolar geometry constraint.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2011年第9期1490-1494,1503,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61075033 60835003 61005033) 模式识别国家重点实验室开放课题基金(201001060)
关键词 图像对应点问题 离群点剔除 图像配准 correspondence problem outlier rejection image registration
  • 相关文献

参考文献15

  • 1Hartley R, Zisserman A. Muhiple view geometry in computer vision [M]. 2nd ed. Cambridge: Cambridge University Press, 2003.
  • 2Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision [M]. 3rd ed. Toronto: Thomson Learning, 2008.
  • 3Rousseeuw P J. Least median of squares regression [J]. Journal of the American Statistical Association, 1984, 79 (388) : 871-880.
  • 4Zhang ZY, Deriche R, FaugerasO, et al. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J].Artificial Intelligence, 1995,78(1/2): 87-119.
  • 5Huber P J. Robust statistics[M]. New York: Wiley, 1981.
  • 6Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communication of the ACM, 1981, 24(6): 381-395.
  • 7Torr P H S, Zisserman A. MLESAC:a new robust estimator with application to estimating image geometry [J].Computer Vision and Image Understanding, 2000, 78(1): 138-156.
  • 8Tordoff B J, Murray D W. Guided-MLESAC: faster image transform estimation by using matching priors [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10) : 1523-1535.
  • 9Torr P H S, Murray D W. Outlier detection and motion segmentation [C]//Proceedings of the SPIE. Bellingham: Society of Photo-Optical Instrumentation Engineers Press, 1993, 2059:432-443.
  • 10Rahmatullah Imon A. Identifying multiple influential observations in linear regression [J].Journal of Applied Statistics, 2005, 32(9):929-946.

二级参考文献22

  • 1Hartley R, Zisserman A. Multiple View Geometry in Computer Vision (Second Edition). Cambridge: Cambridge University Press, 2003
  • 2Brown M Z, Burschka D, Hager G D. Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 993-1008
  • 3Tico M, Rusu C, Kuosmanen P. A geometric invariant representation for the identification of corresponding points. In: Proceedings of International Conference on Image Processing. Kobe, Japan: IEEE, 1999. 462-466
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91--110
  • 5Hartley R, Schaffalitzky F. L∞ minimization in geometric reconstruction problems. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2004. 504-509
  • 6Kahl-F, Hartley R. Multiple view geometry under the L∞- norm. IEEE Transactions on Pattern Recognition and Machine Intelligence, 2008, 30(9): 1603-1617
  • 7Torr P H S, Murray D W. Outlier detection and motion segmentation. In: Proceedings of SPIE. Boston, USA: SPIE, 1993. 432-443
  • 8Sim K, Hartley R. Removing outliers using the L∞ norm. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 485-494
  • 9Li H D. A practical algorithm for L∞ triangulation with outliers. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2007. 1-8
  • 10Rahmatullah I A. Identifying multiple influential observations in linear regression. Journal of Applied Statistics, 2005, 32(9): 929-946

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部