期刊文献+

基于FPGA的混合高斯背景建模实现 被引量:2

Implementation of real-time Gaussian mixture models based on FPGA
下载PDF
导出
摘要 为了解决PC机上高清视频运动目标检测的实时性瓶颈问题,设计了一种基于FPGA的运动目标检测系统。系统采用基于自适应混合高斯背景模型的背景差分法,对环境扰动具有很好的适应性。本设计应用于1 280×1 024高清视频的运动目标检测,针对硬件实现的特点,对OpenCV混合高斯背景模型算法进行改进和适当的参数定点化,设计了适合FPGA实现的结构,在Altera Stratix IV开发平台上成功实现了高清视频的背景建模和目标检测,试验表明效果良好,满足实时检测的要求。 In order to overcome the bottleneck of real-time in moving targets detection of HD video based on PC, this paper designs a moving targets detection system based on FPGA. The system adopts background subtraction based on adaptive Gaussian mixture models, and has good adaptability in non-stationary background scenarios. The design applies to moving target detection of 1 280×1024 HD video. According to the characteristics of hardware, we improve Gaussian mixture background models algorithm in OpenCV, formulate fixed-point scheme, and design the circuit structure which is suitable for FPGA. We successfully realize the background modeling and target detection on Altera Stratix IV development platform, good performances have been demonstrated in the experiment, and we meet real-time demand excellently.
出处 《电子技术应用》 北大核心 2011年第9期60-63,共4页 Application of Electronic Technique
关键词 FPGA 混合高斯背景 目标检测 高清 实时 FPGA Gaussian mixture models targets detection high definition real-time
  • 相关文献

参考文献5

  • 1HARITAOGLU I, HARWOOD D, DAVIS L.Real-time surveillance of people and their activities[J].IEEE Transac- tion on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 809-830.
  • 2STAUFFER C,GRIMSON W.E.L.A daptive background mixture models for real-time tracking[C].IEEE Computer Society Conference on Computer Vision and Pattern Recog- nition.IEEE Computer.Soc, 1999,2.
  • 3KaewTraKulPong,Bowden. An improved adaptive background mixture model for real-time tracking with shadow detection [C].In Proceeding.2nd European Workshop on Advanced Video Based Surveillance Systems ,AVBS01.2001,9.
  • 4刘瑞祯,于仕琪.OpenCV教程[M].北京:航空航天大学出版社,2007.
  • 5Altera Corporation.QDR II and QDR II+SRAM controller with UniPHY user guide.2010.

共引文献2

同被引文献19

  • 1桑红石,傅勇,张天序,刘云生.一种适合硬件实现的多值图像连通域标记算法[J].华中科技大学学报(自然科学版),2005,33(9):5-8. 被引量:5
  • 2吴继化,王城.AlteraFPGA/CPLD设计(高级篇)[M].北京:人民邮电出版社,2005(7):264-265.
  • 3NARAYANAN A H,BRENNAN P,BENJAMIN R,et al. Railway Level Crossing Obstruction Detection Using MI- MO Radar[C]//Proceedings of European Radar Confer- ence (EuRAD). Pairs: EuRAD,2011:57-60.
  • 4MIYAYAMA H, OHYA T, KATORI T, et al. Obstacle Recognition From Forward View Images from Trams [C]//Proceedings of the 11th International Conference on Computer System Design and Operation in the Railway and other Transit Systems. Toledo Spain: Wessex Institute Technology, 2008 : 617-627.
  • 5KRYJAK T, KOMORKIEWICZ M, GORGON M. Real- time Moving Object Detection for Video Surveillance Sys- tem in FPGA[C]//Proceedings of IEEE 2011 International Conference on Design and Architectures for Signal and Im- age Processing. New York: IEEE, 2011 : 1-8.
  • 6JOHNSTON C T,BAILEY D G. FPGA Implementation of a Single Pass Connected Components Algorithm[C]//Pro- ceedings of the 4th IEEE International Symposium on Elec- tronic Design, Test and Applications. New York: IEEE, 2008, 228-231.
  • 7SANCHEZ-FERREIRA C, MORI J Y, LLANOS C H. Background Subtraction Algorithm for Moving Object DETECTION IN FPGA[C]//Proceedings of 2012 VIII Southern Conference on Programmable Logic (SPL). New York: IEEE,2012 : 1-6.
  • 8杨涛,李静,潘泉,程咏梅.一种基于多层背景模型的前景检测算法[J].中国图象图形学报,2008,13(7):1303-1308. 被引量:17
  • 9王彤,史宏,王前,王华伟.客运专线异物侵限监控系统技术的研究[J].铁路计算机应用,2009,18(7):8-10. 被引量:13
  • 10董宏辉,葛大伟,秦勇,贾利民.基于智能视频分析的铁路入侵检测技术研究[J].中国铁道科学,2010,31(2):121-125. 被引量:36

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部