期刊文献+

改进的粒子群算法及在CVaR模型中的应用 被引量:3

Improved Particle Swarm Optimizer and Its Application for CvaR Model
原文传递
导出
摘要 为了求解带有条件风险价值(CVaR)约束的均值-方差模型,提出一种基于广义学习和柯西变异的粒子群算法(CCPSO).在CCPSO算法中,为了提升种群跳出局部最优解的能力,引入一种广义学习策略,提升粒子向最优解飞行的概率;并引入一种动态变异概率,对粒子自身最优位置进行柯西变异,更好地引导种群的飞行;最后,根据全局最优粒子的运行状况,每间隔若干代对其进行变异,以产生全局新的领导者.在基准函数测试中,结果显示CCPSO算法有较好的运行结果.在CVaR模型投资组合优化中,与其它算法相比,CCPSO算法所获结果是有效的,并且优于其它算法. In order to solve the mean-variance portfolio model with conditional value-at-risk (CVaR) constraint, a PSO algorithm based on comprehensive learning and Cauchy mutation is proposed. In CCPSO, to improve the ability to escape from local optima, a comprehensive learning strategy is adopted, which increase the probability of flying to the optimal solution. And a dynamic mutation is introduced to make the Cauchy mutation for each pbest. At last, in terms of the condition of the best performing particle (gbest) in the swarm, at each iteration, the mutation operation is employed to generate the new gbest. The experiments on benchmarks indicate that the proposed algorithm has good performance. In the CvaR model, the CCPSO algorithm is feasible and effective, and better results compared with other algorithms.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第17期139-147,共9页 Mathematics in Practice and Theory
基金 贵州教育厅社科项目(0705204 10ZC077) 遵市科技局项目([2008]21)
关键词 广义学习 粒子群算法 柯西变异 条件风险价值(CvaR) comprehensive learning particle swarm optimizer Cauchy mutation condi-tional value-at-risk
  • 相关文献

参考文献11

  • 1Markowitz H. Portfolio selection [J]. Journal of Finance, 1952, 7(1): 77-91.
  • 2Rockafellar R T and Uryasev S. Optimization of conditional value at risk [J]. Journal of Risk, 2000, 2(3): 21-41.
  • 3Krokhmal P, Pahnquist J and Uryasev S. Portfolio optimization with conditional value-at-risk ob-jective and constraints [J]. Journal of Risk, 2002, 4(2):43-68.
  • 4Alexander G J, Baptista AM. Economic implications of using a mean-var model for portfolio se- lection: a comparison with mean-variance analysis [J]. Journal of Economic Dynamics & Control. 2002, 26(2): 1159-1193.
  • 5Kennedy J and Eberhart R C. Particle swarm optimization [C]. IEEE International Conference oil Neural Networks. Piscataway, USA, 1995: 1942-1948.
  • 6Ratnaweera A, Halgamuge S and Watson H. Self-organizing hierarchical particle swarm optimizer with time- varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240=255.
  • 7刘衍民,赵庆祯,隋常玲,邵增珍.一种基于动态邻居和变异因子的粒子群算法[J].控制与决策,2010,25(7):968-974. 被引量:32
  • 8Van den Bergh F and Engelbrecht A P. A cooperative approach to particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(7): 225 239.
  • 9Wang H, Liu C. A hybrid particle swarm algorithm with Cauchy mutation [C]. IEEE Swarm Intel- ligence Symposium, Honolulu, Hawaii, 2007:356-360.
  • 10Clerc M and Kennedy J. The particle swarm: explosion, stability, and convergence in a multi- dimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 58-73.

二级参考文献13

共引文献36

同被引文献24

  • 1Markowitz H. Portfolio selection[ J ]. Journal of Finance, 1952, 7 ( 1 ) : 77-91.
  • 2Artzner P, Delbaen, Eber J M, et al. Coherent measures of risk[ J]. Mathematical Finance, 1999, 9(3) : 203-228.
  • 3Morgan J P. RiskMetrics technical document[ M]. 4thed. New York: Morgan Guaranty Trust Company, 1996.
  • 4Basak S, Shapiro A. Value-at-risk based risk management: optimal policies and asset prices[ J]. Review of Financial Studies, 2001, 14(2) : 371-405.
  • 5Chen F Y. Analytical VaR for international portfolios with common jumps[ J]. Computers and Mathematics with Applications, 2011. 62(8): 3066-3076.
  • 6Goh J W, Lim K G, Sire M, et al. Portfolio value - at - risk optimization for asymmetrically distributed asset returns [ J]. European Journal of Operational Research, 2012, 221 (2) : 397-406.
  • 7Rockfeller T, Uryasev S. Optimization of conditional value-at-risk[ J ]. Journal of Risk, 2000, 2 (3) : 21-24.
  • 8Roekfller T, Uryasev S. Conditional value-at-risk for general loss distribution[ J]. Journal of Banking and Finance, 2002, 26 (7) : 1443-1471.
  • 9Alexander S, Coleman T F, LI Y. Minimizing CVaR and VaR for a portfolio of derivatives[ J]. Journal of Banking & Finance, 2006, 30(2): 583-605.
  • 10Zhu S S, Fukushima M. Worst-case conditional value-at-risk with application to robust portfolio management[ J]. Operations Research, 2009, 57 ( 5 ) : 1155-1168.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部