期刊文献+

动态场景中自适应去除外点的全局运动估计方法 被引量:4

Global Motion Estimation Method with Adaptive Outliers Elimination in Dynamic Scene
下载PDF
导出
摘要 为在动态场景图像序列中准确地完成全局运动估计,提出一种自适应去除外点的全局运动估计方法。对尺度不变特征变换(Scale invariant feature transform,SIFT)算法提取出的特征点利用最近邻搜索算法中的BBF(Best Bin First)方法进行匹配。为提高全局运动估计的精度,提出改进的随机抽样一致(RANdom SAmple Consensus,RANSAC)算法。此算法能够自适应地去除外点,即利用特征点运动矢量的方差控制迭代次数来进行外点的去除,最终通过摄像机运动模型实现准确的运动参数估计和背景补偿。对标准图像序列Coastguard和实际拍摄的动态场景图像序列的实验表明,提出的方法能够快速地完成动态场景中的全局运动估计与补偿,具有较高的精度和适应性。 To exactly obtain global motion estimation in dynamic scene,this paper presents an adaptive global motion estimation method to eliminate outliers.The Best Bin First(BBF) method of the nearest neighbor search algorithm is used to match feature points extracted by the scale invariant feature transform(SIFT) algorithm.In order to improve the accuracy of feature matching,an improved RANdom SAmple Consensus(RANSAC) algorithm is proposed that can eliminate outliers adaptively.The iterative number is controlled by the variance of motion magnitude of feature points.Through a camera motion model,accurate results of parameter estimation and background compensation are obtained.The proposed algorithm is tested by the Coastguard standard image sequence and the practical one with dynamic scenes.The experimental results are compared with the previous method,which demonstrates that the proposed algorithm is highly accurate and adaptive and that the speed is faster.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2011年第4期442-447,共6页 Journal of Nanjing University of Science and Technology
基金 中央高校基本科研业务费专项资金资助项目(HEUCF100605 HEUCFR1121) 黑龙江省博士后资助项目(3236310003)
关键词 动态场景 匹配 特征点 全局运动估计 外点 dynamic scenes matching feature points global motion estimation outliers
  • 相关文献

参考文献10

  • 1Ross D A, Lim J, Lin R S, et al. Incremental learning for robust visual tracking [ J ]. International Journal of Computer Vision, 2008,77 ( 1 - 3 ) : 125-141.
  • 2Chum O, Matas J, Obdrzalek S. Enhancing RANSAC by generalized model optimization[ A]. Proceedings of the Asian Conference on Computer Vision (ACCV) [ C ]. Seoul, South Korea: Asian Federation of Computer Vision Societies,2004:812-817.
  • 3陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 4Nister D. Preemptive RANSAC for live structure and motion estimation [ J ]. Machine Vision and Applications ,2005,16(5) :321-329.
  • 5Capel D. An effective bail-out test for RANSAC consensus scoring [ A ]. Proceedings of the British Machine Vision Conference [ C ]. Britannia, Britain: Oxford,2005 : 1 - 10.
  • 6田文,王宏远,徐帆,方磊.RANSAC算法的自适应T_(c,d)预检验[J].中国图象图形学报,2009,14(5):973-977. 被引量:20
  • 7卓志敏,杨莘元,杨雷.基于RANSAC+LS算法的红外成像全局运动估计[J].兵工学报,2008,29(3):308-312. 被引量:7
  • 8Ondrej C, Jirf M. Optimal randomized RANSAC [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30 ( 8 ) : 1472-1482.
  • 9Tang Chengyuan, Wu Yileh, Hor M, et al. Modified SIFT description for image matching under interfereence[ A]. Proceedings of the Seventh International Conference on Machine Learning and Cybernetics [ C ]. Kunming, China: IEEE Computer Society, 2008 : 3294 -3300.
  • 10Guo Shuxiang, Qiu Chenguang, Ye Xitffen. A kind of global motion estimation algorithm based on feature matching [ A ]. Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation [ C ]. Changchun, China: IEEE Computer Society ,2009 : 107-111.

二级参考文献32

  • 1宋利,周源华,周军.基于运动矢量的视频去抖动算法[J].上海交通大学学报,2004,38(z1):63-66. 被引量:7
  • 2陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 3赵文华,姚天翔,叶秀清,顾伟康.RANSAC算法在视频去抖动中的应用[J].电路与系统学报,2005,10(4):91-94. 被引量:8
  • 4Fischler M A,Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications ACM,1981,24(6) :381-395.
  • 5Torr P H S,Murray D W. The development and comparison of robust methods for estimating the fundamental matrix [ J ]. International Journal of C omputer Vision, 1997,24 ( 3 ) : 271 - 300.
  • 6Torr P H S,Zisserman A. Robust parameterization and computation of the trifocal tensor[ J]. Image and Vision Computing, 1997,15 ( 8 ) : 591-607.
  • 7Torr P H S. Outlier Detection and Motion Segmentation [ D ] . University of Oxford, England, 1995.
  • 8McLauchlan P F, Jaenicke A. Image mosaicing using sequential bundle adjustment [ J ]. Image and Vision Computing, 2002, 20(9-10) :751-759.
  • 9Leonardis A, Bischof H. Robust recognition using eigenimages [ J ]. Comouter Vision and Image Understanding.2000.78( 1 ) :99-118.
  • 10Chum O, Matas J, Kittler J. Locally optimized RANSAC [ A ] . In: Michaelis B, Krell G. eds: Proceedings of the 25th DAGM Symposium. [ C ], Berlin, Germany : Springer- Verlag,2003:236-243.

共引文献121

同被引文献26

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部