期刊文献+

压缩感知雷达波形优化设计 被引量:5

Optimal Waveform Design for Compressive Sensing Radar
下载PDF
导出
摘要 针对压缩感知雷达(CSR)波形优化问题,该文提出一种基于感知矩阵相关性最小化的CSR波形优化设计方法。首先建立了CSR的系统模型,给出了最小化感知矩阵相关性的波形优化目标函数,其次以多相编码信号作为优化码型,采用模拟退火(SA)算法对目标函数进行优化求解。优化波形有效降低了感知矩阵的相关性,由此提高了CSR目标信息提取的准确性和稳健性。计算机仿真表明优化波形使得感知矩阵相关系数较传统雷达波形明显减小,验证了该方法的有效性。 To solve the problem of waveform optimization for compressive sensing radar(CSR),an optimized method for CSR waveform design through minimizing the coherence of the sensing matrix is proposed here.The system model of CSR is established and the objective function of the waveform optimization for minimizing the coherence of the sensing matrix is presented.The simulated annealing(SA)algorithm is employed to find the optimal solution to the objective function taking polyphase coded signal as an example.The optimized waveform can effectively reduce the coherence of the corresponding sensing matrix,and thus improve the accuracy and robustness of the CSR target information extraction.The computer simulation shows that the optimized waveform significantly reduces the coherence of the sensing matrix compared with traditional radar waveforms,and hence confirms the effectiveness of this proposed method.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2011年第4期519-524,共6页 Journal of Nanjing University of Science and Technology
基金 南京理工大学自主科研专项计划(2010ZYTS0282010ZDJH05)
关键词 压缩感知雷达 波形优化 感知矩阵 相关性 模拟退火 compressive sensing radars waveform design sensing matrix coherence simulated annealing
  • 相关文献

参考文献16

  • 1石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 2Cand-s E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory,2006,52(2) :489-509.
  • 3Cand-s E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2006,59 ( 8 ) : 1207-1223.
  • 4Candbs E J. Compressive sampling[ A]. Proceedings of ICM2006 [ C ]. Madrid, Spain : Association International Congress of Mathematicians, 2006 : 1433-1452.
  • 5Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory,2006,52 (4) : 1289 -1306.
  • 6Baraniuk R, Steeghs P. Compressive radar imaging[ A ]. Proceedings of IEEE International Radar Conference [ C ]. Boston, USA : IEEE Press, 2007 : 128-133.
  • 7Herman M A, Strohmer T. High-resolution radar via compressed sensing [ J ]. IEEE Transactions on Signal Processing, 2009,57 ( 6 ) : 2275-2284.
  • 8余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,32(1):12-16. 被引量:49
  • 9宋琳,曹吉海.基于随机滤波的雷达信号采样和目标重建方法[J].科技导报,2008,26(13):64-67. 被引量:2
  • 10Shi G M, Chen X Y, Qi F, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing [ J ]. IEEE Transactions on Circuits and Systems II : Express Briefs, 2008,55 (4) : 379 -383.

二级参考文献117

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献753

同被引文献71

  • 1王大海,王俊.单发多收模式下无源雷达成像研究[J].电子学报,2006,34(6):1138-1141. 被引量:21
  • 2张馨文,王俊.基于多电视台子孔径综合的无源雷达成像算法[J].电子与信息学报,2007,29(3):528-531. 被引量:17
  • 3屠亚兰.非均匀采样信号重构技术及其在PD雷达HPRF信号处理中的应用[J].现代雷达,1997,19(2):84-87. 被引量:3
  • 4Veen B D V,Bucklev K M.Beamforming:A versatileapproach to spatial filtering[J].IEEE ASSP Magazine,1988,5(2):4-24.
  • 5Capon J.High-resolution frequency-wave number spectrumanalysis[J].Proceedings of IEEE,1969,57(8):1408-1418.
  • 6Widrow B,Mantey P E,Griffiths L J.Adaptive antennasystems[J].Proceedings of IEEE,1967,55(12):2143-2159.
  • 7Griffiths L J,Jim C W.An alternative approach to line-arly constrained adaptive beamforming[J].IEEETransactions on Antennas and Propagation,1982,30(1):27-34.
  • 8Candès E J,Romberg J,Tao T.Robust uncertainty princi-ples:Exact signal reconstruction from highly incompletefrequency information[J].IEEE Transactions on Informa-tion Theory,2006,52(2):489-509.
  • 9Candès E J,Romberg J,Tao T.Stable signal recoveryfrom incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
  • 10Candès E J.Compressive sampling[A].Proceedings ofICM2006[C].Madrid,Spain:Association InternationalCongress of Mathematicians,2006:1433-1452.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部