期刊文献+

L-fuzzy闭包系统和L-fuzzy弱邻域算子 被引量:1

L-fuzzy closure systems and L-fuzzy weak neighborhood operators
原文传递
导出
摘要 进一步研究L-fuzzy闭包系统,运用一一对应的思想和范畴论的方法研究了确定L-fuzzy闭包系统的另一种方法.设X是集合,L是Hutton代数,首先介绍了L-fuzzy弱邻域算子和它们的L-fuzzy连续映射,然后设L-FCSS是L-fuzzy闭包系统空间和它们的L-fuzzy连续映射构成的范畴,L-FWNS是L-fuzzy弱邻域算子空间和它们的L-fuzzy连续映射构成的范畴,证明了L-FCSS和L-FWNS是同构的. To further study L-fuzzy closure system.Another determination of L-fuzzy closure systems are studied with thehelp of idea of one-to-one correspondence and method of category.Let X be a set.L a Hutton algebra,we first introduce definitions of L-fuzzy weak neighborhood operators and their L-fuzzy continuous mappings.Then let L-FCSS be the category L-fuzzy closure system spaces and their L-fuzzy continuous mappings,L-FWNS be the category L-fuzzy weak neighborhood spaces and their continuous mappings,it mainly gives that L-FCSS is isomorphic to L-FWNS
作者 王新奇
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期507-510,共4页 Journal of Yunnan University(Natural Sciences Edition)
基金 教育部科学技术研究重点项目(209152)资助
关键词 L-fuzzy闭包系统 L-fuzzy弱邻域算子 范畴 L-fuzzy closure systems L-fuzzy weak neighborhood operators category
  • 相关文献

参考文献12

  • 1BIACINO L, GERLA G. Closure systems and L - subalgebras [ J ]. Inf Sci, 1984,33 : 181 -195.
  • 2BIACINO L, GERLA G. An extension principle for closure operators [ J ]. J Math Anal Appl, 1996,198:1-24.
  • 3GERLA G. Graded consequence relations and fuzzy closure operators[ J]. J Appl Non- Classical Logics, 1996,6:369-379.
  • 4FANG Jin-ming, LI Yue-yue. L- fuzzy closure systems[ J]. Fuzzy Sets and Systems,2010,161:1 242-1 252.
  • 5SHI Fu-gui. L- fuzzy interiors and L- fuzzy closures[J]. Fuzzy Sets and Systems,2009,160:1 218-1 232.
  • 6LIU Ying-ming, LUO Mao-kang. Fuzzy topology[ M ]. Singapore:World Scientific Publishing, 1997.
  • 7RODABAUGH S E. Categorical frameworks for stone representation theories and topologies, in: RODABAUGH S E et al. ( Eds. ) ,Applications of Category Theory to Fuzzy Subsets [ M ]. Boston, Dordrecht, London: Kluwer Academic Publishers, 1992.
  • 8RODABAUGH S E. Powerset operator foundations for poslat fuzzy set theories, in: U. hShle, RODABAUGH S E et al. ( Eds. ), Mathematics of Fuzzy Sets: Logic,Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Vol. 3 [ M ]. Boston, Dordrecht, London: Kluwer Academic Publishers, 1999.
  • 9朴勇杰.关于拓扑空间上的几乎不动点定理和不动点定理[J].云南大学学报(自然科学版),2010,32(5):497-502. 被引量:4
  • 10HOHLE U. Upper semicontinuous fuzzy sets and Applications[ J] . J Math Anal Appl, 1980,78:659-674.

二级参考文献15

  • 1丁协平.乘积拓扑空间内的重合点组定理及应用(Ⅰ)[J].应用数学和力学,2005,26(12):1401-1408. 被引量:27
  • 2朴勇杰.Almost Fixed Points and Fixed Points of Upper [Lower] Semicontinuous Multimap on Locally G-convex Spaces[J].Northeastern Mathematical Journal,2005,21(4):391-396. 被引量:3
  • 3ZHOU Hai-yun, GAO Xing-hui. A strong convergence theorem for a family of quasi φ - nonexpansive mappings in a Banach space [ J ]. Fixed Point Theory and Applications ,2009,2009,12 pages, doi : 10.1155/2009/351265.
  • 4ZHOU Hai-yun. Demiclosedness principle with applications for asymptotically pseudo -contractions in Hilbert spaces[J]. Nonlinear Analysis ,2009,70 ( 9 ) :3 140-3 145.
  • 5TAKAHASHI W, Nonlinear Functional Analysis [ M ]. Yokohama : Yokohama Publishers, 2000.
  • 6NAKAJO K,TAKAHASHI W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[ J]. J Math Anal Appl,2003 ,279 :372-379.
  • 7MATSUSHITA S, TAKAHASHI W. The sequences by the hybrid method and the existence of fixed points of nonexpansive mappings in a Hilbert space[ C ]. Proceedings of the 8th International Conference on Fixed Point Theory and its Applications, 2007 : 109-113.
  • 8AOYAMA K, KOHSAKA F, TAKAHASHI W. Shrinking projection methods for firmly nonexpansive mappings [ J]. Nonlinear Anal,2009,71:1 626-1 632.
  • 9MARINO G,XU H K. Weak and strong convergence theorems for strict pseudo - contractions in Hilbert spaces [ J ]. J Math Anal Appl,2007,329:336-346.
  • 10TAKAHASHI W. Viscosity approximation methods for countable families of nonexpansive mappings in Banach spaces [ J ]. Nonlinear Anal ,2009,70:719-734.

共引文献10

同被引文献11

  • 1Biacino L. GerIa G. Closure Systems and LSubalgebras[J]. Inf Sci. 1984. 33(3): 181-195.
  • 2Biacino L, Geria G. An Extension Principle for Closure Operators[J].J Math Anal Appl , 1996. 18(1): 1-24.
  • 3GerIa G. Graded Consequence Relations and Fuzzy Closure Operators[J].J Appl Non-classical Logics. 1996. 6(4): 369-379.
  • 4FANGJinming. YUE Yueli. L-Fuzzy Closure Systems[J]. Fuzzy Sets and Systems. 2010. 161(9): 12:12-1252.
  • 5SHIFugui. I.-Fuzzy Interiors and L-FuzzyClosures[J]. Fuzzy Sets and Systems. 2009.160(9): 1218-1232.
  • 6ZHAO Hu. LI Shenggang , CHEN Guixiu. (L.M)-Fuzzy Topological Groups[J].Journal of Intelligent and Fuzzy Systems. 20]4. 26(3): 1517-1526.
  • 7ZHAO Hu , LI Shenggang , CHEN Guixiu. Further Study on (L, M)-Fuzzy Topologies and (L, M)-Fuzzy Neighborhood Systems[J]. IranianJournal of Fuzzy Systems. 2014. 11(3): 109-123.
  • 8LIU Yingrning , LUO Maokang. Fuzzy Topology[M]. Singapore: World Scientific Publishing. 1997 .
  • 9赵虎,钟晓静,李生刚.L-fuzzy的邻域算子、内部算子以及闭包算子之间的相互确定[J].陕西师范大学学报(自然科学版),2010,38(3):16-19. 被引量:5
  • 10安军龙,赵虎,李生刚.L-闭包系统的确定[J].纺织高校基础科学学报,2010,23(2):132-136. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部