期刊文献+

基于区间映射的约束拓扑关联规则挖掘 被引量:2

Constraint topology association rules mining based on interval mapping
原文传递
导出
摘要 针对现有拓扑关联规则挖掘算法不能够有效地提取长频繁约束拓扑关联规则,提出一种基于区间映射的约束拓扑关联规则挖掘算法,该算法适合挖掘带约束空间布局关系的长频繁拓扑关联规则;该算法用区间映射法的下行搜索策略产生候选频繁拓扑项目集,利用逻辑"与"运算计算拓扑关系事务的支持数.实验证明在挖掘长频繁约束拓扑项目集时,该算法比现有算法更快速更有效. For present topology association rules mining algorithm is not able to efficient extract long frequent constraint topology association rules,this paper proposed an algorithm of constraint topology association rules mining based on interval mapping,which is suitable for mining long frequent topology association rules with constraint spatial layout relation.The algorithm uses interval mapping to generate candidate frequent topology itemsets via down search strategy,and uses logic "and" operation to compute support of topology relation transaction.The experiment indicated that the algorithm is faster and more efficient than presented algorithms when mining long frequent constraint topology itemsets.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期521-526,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 重庆市教委科技项目(KJ091108) 重庆三峡学院重点科研项目(11ZD-18)资助
关键词 空间数据挖掘 拓扑关联规则 约束空间布局关系 区间映射 下行搜索 spatial data mining topology association rules constraint spatial layout relation interval mapping down search
  • 相关文献

参考文献10

二级参考文献40

共引文献35

同被引文献22

  • 1王佐成,汪林林,薛丽霞,李永树.空间关联规则的双向挖掘[J].计算机科学,2006,33(7):199-203. 被引量:11
  • 2马荣华,何增友.从空间数据库中挖掘频繁邻近类别集的一种新算法[J].武汉大学学报(信息科学版),2007,32(2):112-114. 被引量:8
  • 3FANG G, WEI Z K,YIN Q. An algorithm of constrained spatial association rules based on binary[ J ]. Lecture Notes in Com- puter Science,2008,5264 (2) : 21-29.
  • 4FANG G, WEI Z K, YIN Q. Extraction of spatial association rules based on binary mining algorithm in mobile computing[ C ]. IEEE Information Conference on Information and Automation, zhangjiajie,,China, IEEE press ,2008:1 571-1 575.
  • 5AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large database [ C ]. Proceedings of 1993 ACM Special Interest Group on Management of Data( SIGMOD 1993), 1993:207-216.
  • 6LIU M,ZHANG J,WONG L. Controlling false positives in association rule mining[ C]. PVLDB ,2012 ,5 (2) :145-156.
  • 7CHEUNG D, HAN J, NG V. Maintenance of discovered association rules in large databases : an incremental updating technique [ C ]. Proceedings of 1996 International Conference on Data Engineering( ICDE 1996), 1996 : 106-114.
  • 8DUDEK D. RMAIN: Association rules maintenance without reruns through data[ J]. Information Sciences ,2009,179 (24) : 4 123-4 139.
  • 9BRIN S, MOTWANI R, SILVERSTEIN C. Beyond market basket:Generalizing association rules to correlations [ C ]. Proceed- ings of 1997 ACM Special Interest Group on Management of Data( SIGMOD 1997), 1997:265-276.
  • 10PEARL J. Probabilistic reasoning in intelligent systems : Networks of plausible inference [ M ]. San Mateo, CA : Morgan Kauf- mann Publishers, 1988.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部