期刊文献+

准分子激光微加工技术结合模塑技术加工微流控芯片 被引量:6

Fabrication of Microfluidic Chip with Two-Step Using Excimer Laser Ablation Micromachining Technique and Replica Molding Technology
原文传递
导出
摘要 利用准分子激光微加工技术与模塑技术相结合的方法制造微流控芯片。用准分子激光在玻璃基胶层上刻蚀出加工质量较高的微流控生物芯片形貌,通过电铸技术对微流控芯片进行复制,得到反向金属模具。用金属模具通过注塑成型技术用聚碳酸酯注塑出微流控芯片。系统研究了准分子激光的能量密度和工作台移动速度对胶层微通道加工质量的影响;测量并分析了激光刻蚀加工出的微流控芯片原型、电铸的反向金属模板和注塑成型后的微流控芯片的轮廓精度和表面粗糙度,上表面尺度偏差不大于2μm,底面粗糙度小于20 nm。对注塑出的微流控芯片和激光直写刻蚀的几何结构相同的微流控芯片的流动性能进行比较测试。在流速较小时,用激光微加工技术与模塑技术相结合的方法加工的微通道比准分子激光直写法所加工的微通道流动性能更好。 We present an effective and low-cost method for fabricating microfluidic chip based on excimer laser direct-writing ablation and replica molding. It is based on a newly excimer laser micromachining technique that can accurately machine microfluidic chip microstructure with smooth surface profile. Microfluidic chips with precise and smooth surface profiles are ablated by direct laser machining on an epoxy glue layer sticking on glass substrates. Laser-machined microfluidic chips are replicated by electroforming to obtain inverse metal molds. Finally, polycarbonate (PC) microfluidic chips are replicated from these metal molds using injection molding method. The relation between the process parameters (the translational speed of working platform and the laser fluence) and the micromachining quality (the depth and surface of the microchannel) is investigated. The profile accuracy and surface roughness of the produced microfluidic chip at each stage are measured and monitored. The average upper surface profile accuracy is better than 2 μm and the average surface roughness is less than 20 nm. Experimental data show the controllability and accuracy of this micromachining process. Experimental investigation is performed on the flow characteristics of water in two different roughness rectangle microchannels. The flow characteristics of water in the microchannels fabricated with the proposed combination method are better than those in the microchannels fabricated with laser direct-writing when the flow velocity is small.
出处 《中国激光》 EI CAS CSCD 北大核心 2011年第9期61-66,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(50875007) 北京市属市管高等学校人才强教计划资助课题
关键词 激光技术 准分子激光 微加工 模塑技术 微流控生物芯片 laser technique excimer laser micromachining replica molding microfluidic chip
  • 相关文献

参考文献17

  • 1U. Kopp Martin, J. de Mello Andrew, A. Manz et al.. Chemical amplification continuous-flow PCR on a chip [J ]. Science, 1998, 280(5366): 1046-1048.
  • 2方肇伦.微流控分析芯片发展与展望[J].大学化学,2001,16(2):1-6. 被引量:37
  • 3C.-H. Tein, Y.-E. Chien, Y. Chiu et al.. Microlens array fabricated by excimer laser micromachining with gray-tone photolithography[J]. Jpn. J. Appl. Phys., Part1, 2003, 42(3) : 1280-1283.
  • 4K. Zimmer, D. Hirsch, F. Bigl. Excimer laser machining for the fabrication of analogous microstructures[J]. Appl. Surf. Sci. , 1996, 96-98: 425-429.
  • 5K. Naessens, H. Ottevaere P. V. Daele et al.. Flexible fabrication of microlenses in polymer layers with excimer laser ablation[J]. Appl. Surf. Sci., 2003, 208-209(1): 159-164.
  • 6祁恒,姚李英,王桐,陈涛,左铁钏.PMMA基PCR微流控生物芯片准分子激光加工[J].微细加工技术,2006(1):16-19. 被引量:4
  • 7K. Naessens, H. Ottevaere, R. Baets et al.. Direct writing of microlenses in polycarbonate with exeimer laser ablation [ J ]. Appl. Opt., 2003, 42(31): 6349-6359.
  • 8祁恒,王贤松,陈涛,马雪梅,姚李英,左铁钏.PMMA基连续流式PCR微流控芯片的C0_2激光直写加工与应用[J].中国激光,2009,36(5):1239-1245. 被引量:13
  • 9L. M. Galantucci, F. Giusti. Excimer laser cutting: experimental characterization and 3D numerical modeling for polyester resins[J]. Ann. CIRP, 1998, 47(1): 141-144.
  • 10K. Zimmer, A. Braun, F. Bigl. Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining [J]. Appl. Surf. Sci. , 2000, 154-155:601-604.

二级参考文献34

  • 1傅建中,相恒富,陈子辰.CO2激光直写加工聚合物微流体芯片的建模研究[J].高等学校化学学报,2004,25(z1):54-56. 被引量:2
  • 2祁恒,姚李英,王桐,陈涛,左铁钏.PMMA基PCR微流控生物芯片准分子激光加工[J].微细加工技术,2006(1):16-19. 被引量:4
  • 3祁恒,陈涛.高聚物生物芯片材料激光加工性能分析[J].激光技术,2005,29(2):138-141. 被引量:9
  • 4卢yong泉 邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989.31-34.
  • 5陈涛 姚李英 祁恒等.PMMA基PCR生物芯片及其准分子激光制备技术的几个关键问题.中国激光,2007,34:46-150.
  • 6I. Schneega, J.M.Khler.Flow-through polymerase chain reactions in chip thermocyclers [J]. Rev.Molec.Biotechnol., 2001, 82(2):101-121
  • 7S.C.Jakeway, A.J.de Mello, E.L.Russell. Miniaturized total analysis systems for biological analysis [J].Fresenius J.Anal.Chem., 2000, 366:525-539
  • 8H.Nakano, K.Matsuda, M.Yohda et al.. High speed polymerase chain reaction in constant flow[J].Biosci., Biotechnol., Biochem., 1994, 58(2):349-352
  • 9M.U.Kopp, A.J.de Mello, A.Manz.Chemical amplification:continuous-flow PCR on a chip [J].Science, 1998, 280:1046-1048
  • 10J.A.Kim, J.Y.Lee, S.Y.Seong et al..Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip [J].Biochem.Eng.J., 2006, 29 (1-2):91-97

共引文献53

同被引文献53

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部