期刊文献+

基于扰动补偿趋近律的非匹配离散广义准滑模控制

QUASI-SLIDING MODE CONTROL FOR MISMATCHED DISCRETE SINGULAR SYSTEMS BASED ON REACHING LAWS WITH DISTURBANCE COMPENSATOR
原文传递
导出
摘要 研究了非匹配不确定离散广义系统准滑模控制策略的综合问题.给出了具有前级状态向量的动态切换函数,使得系统能够在切换带内稳定.设计了两种带有扰动补偿的离散广义趋近律,消除了常规滑模控制策略中不确定项必须有界的限制,且不必满足匹配条件.给出了系统准滑动模态保持逐步穿越切换面的必要条件,减小了准滑动模态切换带的带宽.所设计的滑模控制器在有限时间内可达切换面,削弱了系统抖振,有效地改善了系统动态品质.最后,数值算例验证了该控制策略的可行性. The synthesis problem of quasi-sliding mode control strategies for mismatched discrete singular systems with internal parameter perturbation and external disturbance is considered. A dynamic switching function with last step state vector is given to guarantee the stability of the control system in the switching band. Two types of discrete singular reaching laws with disturbance compensator are designed to eliminate the restriction that the system uncertainties is bounded and must satisfy matching conditions compared with conventional sliding mode control strategy. Necessary conditions for quasi-sliding mode to cross the switching plane step by step are provided, and the switching band of quasi-sliding mode is reduced. Two types of discrete singular sliding mode controllers are designed by applying the reaching laws, which can guarantee the system to reach the switching plane in finite time, decrease the system chattering and enhance the dynamic quality of the system effectively. Finally, a numerical example illustrates the feasibility of the proposed control strategies.
出处 《系统科学与数学》 CSCD 北大核心 2011年第6期720-730,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60974025)资助项目
关键词 离散广义系统 趋近律 准滑模 扰动补偿. Discrete singular system, reaching law, quasi-sliding mode, disturbance compensator.
  • 相关文献

参考文献21

  • 1刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418. 被引量:567
  • 2Tang G Y, Dong R, and Gao H W. Optimal sliding mode control for nonlinear systems with time-delay. Nonlinear Analysis: Hybrid Systems, 2008, 2(3): 891-899.
  • 3Hung Y C, Liao T L, and Yan J J. Adaptive variable structure control for chaos suppression of unified chaotic systems. Applied Mathematics and Computation, 2009, 209(2): 391-398.
  • 4Roopaei M and Zolghadri Jahromi M. Chattering-free fuzzy sliding mode control in MIMO uncer- tain systems. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(10): 4430-4437.
  • 5Letizia C M, Leo T, and Orlando G. Experimental testing of a discrete-time sliding mode controller for trajectory tracking of a wheeled mobile robot in the presence of skidding effects. Journal of Robotic Systems, 2002, 19(4): 177-188.
  • 6李升波,李克强,王建强,杨波.非奇异快速的终端滑模控制方法及其跟车控制应用[J].控制理论与应用,2010,27(5):543-550. 被引量:33
  • 7Dadras S and Momeni H R. Control of a fractional-order economical system via sliding mode. Physica A: Statistical Mechanics and Its Applications, 2010, 389(12): 2434- 2442.
  • 8Yahyazadeh M, Ranjbar Noei A, and Ghaderi R. Synchronization of chaotic systems with known and unknown parameters using a modified active sliding mode control. ISA Transactions, 2011, 50(2): 262-267.
  • 9Gao W B, Wang Y F, and Homaifa A. Discrete-time variable structure control systems. IEEE Trans. on Industrial Electronics, 1995, 42(2): 117-122.
  • 10高存臣,刘云龙,李云艳.不确定离散变结构控制系统的趋近律方法[J].控制理论与应用,2009,26(7):781-785. 被引量:27

二级参考文献61

共引文献654

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部