期刊文献+

多壁碳纳米管修饰铂基片石英晶体微天平研究白细胞介素-6与其受体的相互作用 被引量:1

Interaction of Interleukin-6 and Soluble Interleukin-6 Receptor Based on Multi-walled Carbon Nanotubes Activated Pt Quartz Crystal Microbalance
下载PDF
导出
摘要 在pH 7.4、室温条件下,用多壁碳纳米管(MWCNTs)修饰石英晶体微天平(QCM)Pt基片,经过EDC/NHS活化后固定白细胞介素-6(IL-6),检测不同浓度可溶性白细胞介素-6受体(sIL-6R)与IL-6的结合所引起响应信号的变化,并用Origin软件对数据进行拟合分析,构建了一种高性能实时监测IL-6与sIL-6R之间相互作用的亲和型生物传感器。实验表明:随着sIL-6R浓度的增加,其结合量呈线性增长,相关系数(R2)为0.997。IL-6与sIL-6R之间相互作用的结合平衡常数(KA)和解离平衡常数(KD)分别为3.37×106 L/mol和2.97×10-7 mol/L。验证了通过MWCNTs修饰的Pt QCM能够高效监测IL-6与sIL-6R间相互作用及动力学过程,有助于阐明二者的生物学功能。 An affinity biosensor using multi-walled carbon nanotubes to activate Pt quartz crystal microbalance(QCM) electrode and immobilizing interleukin-6(IL-6) on 1-ethyl-3-(3-dimethylaminopropyl) carbodimide(EDC)/N-hydroxysuccinimide(NHS)-activated QCM electrode was employed to real time detect the interaction and kinetic analysis of IL-6 and soluble interleukin-6 receptor(sIL-6R),and the association data between IL-6 and sIL-6R was fitted by Origin software.The results showed that the combined masses of sIL-6R on IL-6-EDC/NHS-MWCNTs activated Pt QCM increased linearly with the increase of concentration of sIL-6R,and the linear correlation coefficient was 0.997.For the interaction,KA was 3.37×106 L/mol,and KD was 2.97×10-7 mol/L.The experiment proves the feasibility of using multi-walled carbon nanotubes activated Pt quartz crystal microbalance to monitor the interaction and kinetic analysis of IL-6 and sIL-6R,it can help to clarify the important biological function of IL-6 and sIL-6R.All experiments were performed in PBS(0.01 mol/L,pH 7.4) at room temperature.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2011年第9期1302-1306,共5页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(Nos.30870665,30772746,90709038) 天津市自然科学基金(Nos.08JCZDJC20600,09ZCGHHZ00100)资助项目
关键词 多壁碳纳米管 Pt基片 石英晶体微天平 白细胞介素-6 可溶性白细胞介素-6受体 Multi-walled carbon nanotubes Platinum electrode Quartz crystal microbalance Interleukin-6 Soluble interleukin-6 receptor
  • 相关文献

参考文献20

  • 1JazayeriJ A, CarrollGJ, Vernallis A B. International Immunopharmacology, 2010, 10(1): 1-8.
  • 2Mackiewicz A, Wiznerowicz M, Roeb E, Karczewska A, Nowak J, Heinrich P C, Rose John S. Cytokine, 1995, 7(2): 142-149.
  • 3Mitsuyama K, Toyonaga A, Sasaki E, Ishida O, Ikeda H, Tsuruta O, Harada K, Tateishi H, Nishiyama T, Tani kawa K. Gut, 1995, 36(1): 45-49.
  • 4Dmitriev D A, Massino Y S, Sega O L. Journal of Immunological Methods, 2003, 280(1- 2): 183-202.
  • 5Yang Y A, Zhang CJ. Sens. Actuators B: Chem, 2009, 142(1): 210-215.
  • 6Peduru Hewa T M, Tannock G A, Mainwaring D E, Harrison S, Fecondo J V. Journal of Virology Methods, 2009, 162(1-2): 14-21.
  • 7Iijima S. Nature, 1991, 354(7): 56-58.
  • 8Iijima S, Ichihashi T. Nature, 1993, 363(6430): 603-605.
  • 9蔡少瑜,孔继烈.碳纳米管在肿瘤诊断与治疗研究中的新进展[J].分析化学,2009,37(8):1240-1246. 被引量:10
  • 10Qin X, Wang H C, Wang X S, Miao Z Y, Chen L L, Zhao W, Shah M M, Chen Q. Sens. Actuators B, 2010, 147(2) : 593-598.

二级参考文献67

  • 1Iijima S.Nature,1991,354:56-58.
  • 2Bianco A,Kostarelos K,Prato M.Curr.Opin.Chem.Biol.,2005,9(6):674-679.
  • 3Bianco A,Kostarelos K,Partidos C D,Prato M.Chem.Commun.,2005,5:571-577.
  • 4Lacerda L,Bianco A,Prato M,Kostarelos K.Adv.Drug Del.Rev.,2006,58(14):1460-1470.
  • 5Klumpp C,Kostarelos K,Prato M,Bianco A.Biochim.Biophys.Acta,2006,1758(3):404-412.
  • 6Kam N W S,Dai H J.Phys.Stat.Sol.(b),2006,243(13):3561-3566.
  • 7Alper J.NCI Alliance for Nanotechnology in Cancer,2006.
  • 8Krieger K.Anal.Chem.,2006,78(5):1383.
  • 9Lacerda L,Raffa S,Prato M,Bianco A,Kostarelos K.Nanotoday,2007,2(6):38-43.
  • 10Liu Y F,Wang H F.Nature Nanotech.,2007,2(1):20-21.

共引文献9

同被引文献28

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部