期刊文献+

一种单分量PPS的快速估计算法 被引量:1

A Fast Algorithm for Mono-Component PPS Parameter Estimation
下载PDF
导出
摘要 提出了基于多项式-厄米多项式变换(PHPT)的多项式相位信号(PPS)参数估计算法.其基本思路是将相位系数转化为泰勒系数的估计,并用PHPT实现泰勒系数的估计.该方法为线性算法,对最低阶系数有很好估计效果,且计算复杂度比已有算法低,等效于三次FFT运算.仿真验证了该方法的有效性. A PHPT-based algorithm is proposed for parameter estimation of high-order polynomial phase signal(PPS).The basic idea is to translate the phase parameters estimation into the estimation of the corresponding Taylor coefficients of the signal,and Taylor coefficients are estimated by using PHPT.As a linear algorithm,the proposed method has a good performance for the estimation of the lowest-order phase coefficient,and the computational complex is about three FFT operations,which is lower than the exist ones when the phase order is more than three.Computational simulations are presented to illustrate the effectiveness of the proposed algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第8期1923-1926,共4页 Acta Electronica Sinica
关键词 参数估计 多项式相位信号 厄米多项式 泰勒展开 多项式-厄米多项式变换 parameter estimation polynomial phase signal hermite polynomial taylor expansion polynomial-to-Hermite polynomial transform
  • 相关文献

参考文献17

  • 1T J Abatzoglou. Fast maximum likelihood joint estimation of frequency and frequency rate [J]. IEEE Trans, Aerosp FAeclron Syst, 1986,22( 11 ) : 708 - 715.
  • 2J Angeby. Estimating signal parameters using the nonlinear instantaneous least squares approach [ J]. IEEE Trans, Signal Process, 2000,48(10) : 2721 - 2732.
  • 3Shimon Peleg, Boaz Porat. The cramer-Rao lower bound for signals with constant amplitude and polynomial phase [ J ]. IEEE Trans, Signal Process, 1991,39(3) : 749 - 752.
  • 4Y Wu, HC So, H Liu. Subspace-based algorithm for parameter estimation of polynomial phase signals [ J]. IEEE Tram,Signal Process, 2008,56(10) : 4977 - 4983.
  • 5S Peleg, B Friedlander. The discrete polynomial-phase transform[J]. IEEE Trans, Signal Process, 1995,43 (8) : 1901 - 1914.
  • 6S Golden, B Friedlander. A modification of the discrete polynomial transform [ J]. IEEE Trans, Signal Process, 1998,46(5 ) : 1452 - 1455,1901 - 1914.
  • 7B Porat, B Friedlander. Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of poly- nomial phase signals [ J ]. IEEE Trans, Inf Theory, 1996, 42 (3) :995 - 1001.
  • 8B Barkat, B Boashash. Design of higher order polynomial Wigner- Ville distributions [J].IEEE Trans, Signal Process, 1999,47(9) :2608 - 2611.
  • 9S Barbarossa, A Scaglione, G B Giannakis. Product high-order ambiguity function for multicomponent polynomial-phase signal modeling [ J]. IEEE Tram, Signal Process, 1998,46 (3) : 691 - 708.
  • 10B Porat. Digital Processing of Random Signals: Theory and Methods. Englewood Cliffs[ M]. NJ: Prentice-Hall, 1994.

二级参考文献33

  • 1王忠仁,林君,李文伟.基于Wigner-Ville分布的复杂时变信号的时频分析[J].电子学报,2005,33(12):2239-2241. 被引量:26
  • 2Peter O'Shea.A new technique for Instantaneous frequency rate estimation[J].IEEE Signal Processing Letters,2002,9(8):251-252.
  • 3M Z Ikram,G Tong Zhou.Estimation of multicomponent polynomial phase signals of mixed orders[J].Signal Processing,2001,81:2293-2308.
  • 4S Barbarossa,et al.Product high-order ambiguity function for multicomponent polynomia-phase signal modeling[J].IEEE Trans Signal Processing,1998,46(3):691-708.
  • 5Y Wang,G Tong Zhou.On the use of high-order ambiguity function for multicomponent polynomial phase signals[J].Signal Processing,1998,65:283-296.
  • 6S Peleg,B Friedlander.Multicomponent signal analysis using the polynomial phase transform[J].IEEE trans On Aerospace and Electronic systems,1996,32(1):378-386.
  • 7M Z Ikram,et al.Estimating the parameters of Chirp signals:an iterative approach[J].IEEE Trans.Signal Processing,1998,46(12):3436-3440.
  • 8Peter O'Shea.A new technique for instantaneous frequency rate estimation[J].IEEE Signal Processing Letters,2002,9(8):251-252.
  • 9M Z Ikram,et al.Estimation of multicomponent polynomial phase signals of mixed orders[J].Signal Processing,2001,81:2293-2308.
  • 10S Barbarossa,et al.Product high-order ambiguity function for multicomponent polynomia-phase signal modeling[J].IEEE Trans Signal Processing,1998,46(3):691-708.

共引文献26

同被引文献25

  • 1刘庆云,李志舜,李海英,梁红.多分量多项式相位信号的参量估计[J].电子学报,2004,32(12):2031-2034. 被引量:17
  • 2Boashash B. Estimating and interpreting the instantaneous fre- quency of a signal-Part h Fundamentals[ J]. Proceedings of the IEEE, 1992,80(4) :520 - 538.
  • 3Boashash B. Estimating and interpreting the instantaneous fre- quency of a signal-Part ll:Algorithms and applications[ J] .Pro- ceedings of the IEEE, 1992,80(4) :540 - 568.
  • 4Boashash B. Time Frequency Signal Analysis and Processing: A Comprehensive Reference [ M ]. London: Elsevier, 2003.63 - 66.
  • 5Sejdic E, Djurovic I, Jiang Jin. Time-frequency feature repre- sentation using energy concentration:An overview of recent ad- vances[ J ]. Signal Processing, 2009,19 (1) : 153 - 183.
  • 6Orovic I, Orlandic M, Stankovic S, et al. A virtual imtrument for time-frequency analysis of signals with highly nomtationary instantaneous frequency[ J]. Transaction on instrumenta- tion and measurement, 2011,60(3) : 791 - 803.
  • 7Stankovic L. A multitime definition of the Wigner higher order distribution: L-Wigner distribution [ J ]. mEE Signal ProcessingLetters, 1994,1 (7) : 106 - 109.
  • 8Barbarossa S, Scaglione A, Giannakis G B. Product high-order ambiguity function for multicomponent polynomial-phase signal modeling[ J ]. IEEE Transactions on Signal Processing, 1998,46 (3) :691 - 708.
  • 9Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate [J]. IEEE Transactions on Aerospace and Electronic Systems, 1986,22( 11 ) : 708 - 715.
  • 10Angeby J. Estimating signal parameters using the nonlinear in- stantaneous least squares approach[ J]. IEEE Transactions on Signal Processing, 2000,48(10) : 2721 - 2732.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部