期刊文献+

聚类的(α,k)-匿名数据发布 被引量:19

Achieving(α,k)-Anonymity via Clustering in Data Publishing
下载PDF
导出
摘要 为更好的抵御背景知识攻击和同质攻击,保护特定的敏感值或全部敏感值,定义了单敏感值(,αk)-匿名模型和多敏感值(,αk)-匿名模型,并分别设计了两个聚类算法予以实现,同时分析了算法的正确性和复杂性.对于即包含连续属性又包含分类属性的数据集,给出了数据集的详细映射与处理方法,使数据集中点的距离可以方便的计算,彻底避免了把数据点距离和信息损失混淆的情况.详细的理论分析和大量的实验评估表明算法有较小的信息损失和较快的执行时间. To better protect personal privacy against background knowledge attack and homogeneity attack,single sensitive value and multi sensitive values(α,k)-anonymity models were defined respectively.For achieving this purpose,two clustering algorithms were designed.At the same times,we made correctness and complexity analysis for the algorithms.Since the data sets contain continuous attributes and classification attributes,a detailed mapping and processing method was given,that make the distance between data points can calculate easily,and avoid completely the case that confusion data points distance and information loss.Experiment results and detailed theory analysis demonstrate that our methods are effective on both information loss and execution time comparing with existing methods.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第8期1941-1946,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61073043,No.61073041,No.60873037) 黑龙江省自然科学基金(No.F200901)
关键词 数据发布 K-匿名 l-多样性 隐私保护 聚类 data publishing k-anonymity l-diversity privacy preserving clustering
  • 相关文献

参考文献11

  • 1Fung B C M, Wang K, Chen R, et al. Privacy-preserving data publishing: A survey of recent developments[J].ACM Comput Surv,2010,42(4) : 1 - 53.
  • 2韩建民,岑婷婷,虞慧群.数据表k-匿名化的微聚集算法研究[J].电子学报,2008,36(10):2021-2029. 被引量:40
  • 3Sweeney L. k-anonymity:A model for protecling privacy[J]. Intemational Journal of Uncertainty Fuzziness and Knowledge Based Systems,2002,10(5) :557 - 570.
  • 4Machanavajjhala A, Kifer D, Gehrke J, et al. 1-diversity: Privacy beyond k-anonymity [ J ]. ACM Transactions on Knowlelge Discovery from Data, 2007,1 ( 1 ) : 1 - 52.
  • 5王智慧,许俭,汪卫,施伯乐.一种基于聚类的数据匿名方法[J].软件学报,2010,21(4):680-693. 被引量:49
  • 6Wong R,Li J,Fu A,et al. ( a, k)-anonymity:An enhanced k- anonymity model for privacy preserving data publishing [ A ]. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining [ C ]. ACM, 2006.754 - 759.
  • 7Wong R,Li J,Fu A, et al. (a, k)-Anonymous data publishing[J].Journal of Intelligent Information Systems, 2009, 33 (2) : 209 - 234.
  • 8韩建民,于娟,虞慧群,贾泂.面向敏感值的个性化隐私保护[J].电子学报,2010,38(7):1723-1728. 被引量:40
  • 9Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values [ J ]. Data Mining and Knowledge Discovery, 1998,2(3) :283 - 304.
  • 10Li C, Biswas G. Unsupervised learning with mixed numeric and nominal data [ J]. IEEE Transactions on Knowledge and Data Engineering,2002,14(4) :673 - 690.

二级参考文献51

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 3彭京,唐常杰,程温泉,石葆梅,乔少杰.一种基于层次距离计算的聚类算法[J].计算机学报,2007,30(5):786-795. 被引量:11
  • 4Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract) [A ]. Proc of the 17th ACM-SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems[C]. Seattle, WA, USA: IEEE press, 1998.188.
  • 5Samarafi P. Protecting respondents' identities in microdata release[J]. IEEE Transactions on Knowledge and Data Engineering,2001,13(6) : 1010 - 1027.
  • 6Sweeney L. K-anonymity: a model for protecting privacy[J]. International Journal on Uncertainty, Fuzziness and Knowledge- Based Systems,2002,10(5) :557 - 570.
  • 7Sweeney L. Achieving k-anonymity privacy protection using generalization and suppression[ J]. International Jounlal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10 (5) :571 - 588.
  • 8Iyengar V. Transforming data to satisfy privacy constraints[A]. Proc of the 12th ACM SIGKDD Conference [C]. Edmonton, Alberta, Canada: ACM Press, 2002.279 - 288.
  • 9Yao C,Wang X S, Jajodia S. Checking for k-anonymity violation by views[A] .Proc of the 31st International Conference on Very Large Data Bases [C]. Trondheim, Norway: VLDB Endowment, 2005.910 - 921.
  • 10Machanavajjhala A, Gehrke J, Kifer D. L-diversity: privacy beyond k-anonymity[A]. Proc of the 22nd International Conference on Data Engineering[ C]. Atlanta, GA, USA: IEEE Press, 2006.24 - 36.

共引文献105

同被引文献230

引证文献19

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部