期刊文献+

基于谱回归和核空间最近邻的基因表达数据分类 被引量:6

Spectral Regression and Kernel Space K-Nearest Neighbor for Classification of Gene Expression Data
下载PDF
导出
摘要 肿瘤基因表达数据是典型的高维小样本数据,直接对其进行识别存在维数灾难,需要对数据进行维数约简.提出了一种基于谱回归分析和核空间最近邻分类器的基因表达数据分类方法,采用谱回归分析得到可有效提取低维鉴别特征的投影矩阵,然后通过投影矩阵对基因表达数据进行维数约简,得到的低维数据用核空间最近邻分类器进行识别.通过在Prostate-Tumor,4-Tumors两种肿瘤数据集上的实验,证明了该方法的有效性;同时证明了核空间最近邻具有比最近邻更好的分类效果. Cancer gene expression data is a typical data with high dimension and small sample,identifying it directly will encounter the curse of dimensionality,so needs dimensions reduction.This paper proposes a kind of classification approach based on Spectral Regression(SR)analysis and Kernel space K-Nearest Neighbor(KKNN) classifier for gene expression data,it gets the projection matrix through Spectral Regression Analysis witch can extract effectively discriminative characteristics of low dimensions,and reduces the dimensionality of gene expression data by projection matrix,then identifies the low-dimensional data reduced with the Kernel Space K-Nearest Neighbor Classifier.As the experiments operated on the cancer datasets Prostate-Tumor and 4-Tumors demonstrate the effectiveness of the proposed algorithm;simultaneously,compared with the K-Nearest Neighbor(KNN) classification approach,The Kernel space K-Nearest Neighbor has a better classification result.
作者 于攀 叶俊勇
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第8期1955-1960,共6页 Acta Electronica Sinica
基金 中央高校基本科研业务费(No.10120018)
关键词 基因表达数据分类 核空间最近邻 谱回归分析 维数约简 gene expression data classification kernel space k-nearest neighbor spectral repression analysis dimensions reduction
  • 相关文献

参考文献15

  • 1Baldi P, Hatfield G. DNA Microarmys and Gene Gxpression: from Experiments to Data Analysis and Modeling [ M ]. Cambridge: Cambridge University Press, 2002.51 - 84.
  • 2L Conde, A Mateo s, J Herren, et al. Unsupervised reduction of the dimensionality followed by supervised learning with a per- ceptron improves the classification of conditions in DNA Mi- croatray gene expression datal A ]. Bourlard H. Proceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing[ C]. New York, USA: IEEE, 2004.77 - 86.
  • 3赵丽红,孙宇舸,蔡玉,徐心和.基于核主成分分析的人脸识别[J].东北大学学报(自然科学版),2006,27(8):847-850. 被引量:16
  • 4Zhou Jin,Pan Yuqi, Chen Yuehui, Liu Yang. Ensemble classi- tiers based on kernel PCA for cancer data classification[ A]. Huang Deshuang. Emerging Intelligent Computing Technology and Applications: With Aspects of Artificial Intelligence [ C ]. Berlin, Germany: Springer-Verlag, 2009.955- 964.
  • 5Tu Chunping, Gan I.an, Yu Zhongping. Based on an improved pre-PCA + LDA classifier design in tumor cells[ A]. CCTAE 2010-2010 International Conference on Computer and Commu- nication Technologies in Agriculture Engineering [ C ]. Piscataway, NJ, USA: IEEE,2010.95 - 98.
  • 6Sharma A, Paliwal K K. Cancer classification by gradient LDA technique using microarray gone expression data[ J]. Data and Knowledge Engineering,2008,66(2) :338 - 347.
  • 7Zhu Lei,Han Bin,Li Hua,Xu Shenhua,Mou Han-zhou, Zheng Zhi-guo. Null space LDA based feature extraction of mass spectrometry data for cancer classification[ A]. Wang YQ. Proceedings of the 2009 2nd International Conference on Biomedi- cal Engineering and Informatics [ C ]. New York, USA: IEEE Medicine and Biology Society,2009.1486- 1489.
  • 8P N Belhumeur, J P Hespanha, D J Kriegman. Eigenfaces vs fisherfaces: Recognition using class specific linear projection [J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7) :711 - 720.
  • 9李颖新,阮晓钢.基于基因表达谱的肿瘤亚型识别与分类特征基因选取研究[J].电子学报,2005,33(4):651-655. 被引量:18
  • 10A M Martinez, A C Kak. PCA versus LDA[ J]. IEEE Transactions on Pattern Analysis and Machine InteUigence,2001,23 (2) :228 - 233.

二级参考文献22

  • 1Theodoridis S,Koutroumbas K.Pattern Recognition(2nd Edition)[M].New York:Academic Press,2003.177-179.
  • 2Vapnik V N.Statistical Learning Theroy[M].New York:Wiley Interscience,1998.
  • 3Padil P,Novoviová J,Kittler J.Floating search method in feature selection[J].Pattern Recognition Letters,1994,15(11):1119-1125.
  • 4Jain A,Zongker D.Feature selection:evaluation,application and small sample performance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(2):153-158.
  • 5DeRisi J,Penland L,Brown P O,et al.Use of a cDNA microarray to analyse gene expression patterns in human cancer[J].Nature Genetics,1996,14(4):457-460.
  • 6Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 7Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Medicine,2001,7(6):673-679.
  • 8Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2000,46(13):389-422.
  • 9Broad Institute.Cancer Program Data Sets[DB/OL].http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi,1999-10-15/2003-06-09.
  • 10Ramaswamy S,Golub T R.DNA microarrays in clinical oncology[J].Journal of Clinical Oncology,2002,20(7):1932-1941.

共引文献32

同被引文献84

  • 1赵洪卫,宋曙辉,常冬,韩东海.小型西瓜果实生长过程中无损检测基础信息的研究[J].食品安全质量检测学报,2011,2(6):273-279. 被引量:4
  • 2张海燕,李欣,田书峰.基于BP神经网络的仿真线设计及其FPGA实现[J].电子与信息学报,2007,29(5):1267-1270. 被引量:13
  • 3王志新.张华,葛宜远.现代注塑机控制一微机及电液控制技术与工程应用[M].北京:中国轻工业出版社,2001.
  • 4Agrawal A R, Pandelidis I O, Pecht M. Injection-molding process control-A review[J]. Polymer Engineering & Science, 2007, 27(18): 1345-1357.
  • 5Smilde A K, Bro R, Geladi P. Multi-way analysis, application in the Chemical Science[M]. England: John Wiley & Sons, 2003.
  • 6Sanchez E, Kowalshi B R. Tensorial resolution: a direct trilineardecomposition[J]. Chemometrics, 1990, 4(I): 29- 45.
  • 7Yang Y. Injection Molding: from process to quality control[D]. Hong Kong: The Hong Kong University of Science & Technology, 2004.
  • 8Candamo J, Shreve M,Goldgof D B, et al. Understanding transit scenes: a survey on human behavior-recognition algorithms[J]. IEEE Transactions on Intelligent Transpor- tation Systems, 2010,11 ( 1 ) : 206-224.
  • 9Chandola V, Banerjee A, Kumar V. Anomaly detection-a survey[J]. ACM Computing Surveys, 2009,41 (3) ; 1-58.
  • 10Ke S R,Thuc H L U,Lee Y J. A review on video-based human activity recognition [J]. Computers, 2013,2 ( 2 ) 88-131.

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部