期刊文献+

核能制氢技术的发展 被引量:16

Development of the Technology for Nuclear Production of Hydrogen
下载PDF
导出
摘要 氢是清洁能源,有非常好的应用前景。但氢是二次能源,需要利用一次能源来生产。以可持续的方式(原料来源丰富、无温室气体排放)实现氢的大规模生产是实现氢广泛利用的前提。核能是清洁的一次能源,核电已经成为世界电力生产的主要方式之一。正在研发的第四代核能系统除了要使核电生产更经济和更安全之外,还要为实现核能在发电之外的领域的应用开辟途径。核能制氢就是以来源丰富的水为原料,利用核能实现氢的大规模生产。热化学循环工艺和高温蒸汽电解都是有望与核能耦合的先进制氢工艺,世界上许多国家,如美国、日本、法国、加拿大和中国,都在大力开展核能制氢技术的研发工作。中国正在积极发展核电,在大力开展核电站建设的同时,也非常重视核氢技术的发展。可以提供高温工艺热、最适合用于制氢的高温气冷堆示范电站的建设已经列入国家重大专项;在进行示范电站建设的同时,正在开展制氢工艺的研发工作。在2009年,清华大学核能与新能源技术研究院成功进行了对硫碘热化学循环和高温蒸汽电解的实验室规模工艺验证。 Hydrogen is a clean energy and must be produced by means of primary energy. To use nuclear energy for producing hydrogen in commercial scale is a promising way in the future. High temperature gas cooled reactor (HTGR) can generate electricity with high efficiency and provide high temperature process heat, therefore, it is most suitable for hydrogen production. Two hydrogen production processes, thermochemical cycle and high temperature steam electrolysis (HTSE), could be used for coupling with HTGR. These processes are being investigated in many countries, such as the United States, Japan, France, Canada and China. The nuclear power is rapidly developing in China. The construction of 200 MWe HTGR-PM demonstration plant has been started. In the meantime, the nuclear production of hydrogen processes are being developed in Institute of Nuclear and New Energy Technology(INET), Tsinghua University. The both processes, S-I thermochemical cycle and HTSE, have been successfully verified in laboratory scale in 2009.
出处 《核化学与放射化学》 CAS CSCD 北大核心 2011年第4期193-203,共11页 Journal of Nuclear and Radiochemistry
关键词 氢能 核能制氢 热化学循环 高温蒸汽电解 hydrogen energy nuclear production of hydrogen thermochemical cycle high temperature steam electrolysis
  • 相关文献

参考文献26

  • 1International Energy Agency. World Energy Outlook 2008[R]. Paris: IEA, 2008.
  • 2Schindler J. National Strategies and Programs[M]/// Detlef S. Hydrogen and Fuel Cell. Germany: Wiley-VCH, 2010: 449-463.
  • 3Alan C L, Ed P, Anil B. Renewable Hydrogen Production[M]//Detlef S. Hydrogen and Fuel Cell. Germany: Wiley-VCH, 2010: 465-488.
  • 4Henderson A, Pickard P, Park C. The US Department of Energy's Research and Development Plans for the Use of Nuclear Energy for Hydrogen Pro- duction[C]//The Second Information Exchange Meeting of Nuclear Production of Hydrogen. Ar gonne, Illinois, USA: OECD/NEA, Oct. 2-3, 2003: 73-83.
  • 5Yildiz B, Kazimi M. Efficiency of Hydrogen Pro duction System Using Alternative Nuclear Energy Technology[R]. USA: MIT Report, 2004.
  • 6Christian S. Thermochemical Cycles[M]//Detlef S. Hydrogen and Fuel Cell. Germany: Wiley-VCH, 2010: 189-206.
  • 7Norman G H. Thermochemical Water-Splitting Cycle, Bench-Scale Investigations and Process Engi- neering, GA-A16713[R]. USA: General Atomics, 1982.
  • 8Lewis M, Masin J. An Assessment of the Efficiency of the Hybrid Copper Chloride Thermochemical Cycle[C]//A1ChE Conference Proceedings. Cincinnati USA: A1ChE, Oct. 30-Nov. 4, 2005.
  • 9Detlef S, Dennis K. Alkine Electrolysis Introduction and Overview[M]//Detlef S. Hydrogen and Fuel Cell. Germany: Wiley-VCH, 2010: 243-270.
  • 10Tom S, Sebastian R, Christopher H. Polymer Electrolyte Membrane (PEM) Water Electrolysis[M]// Detlef S. Hydrogen and Fuel Cell. Germany: Wiley-VCH, 2010: 271-289.

同被引文献188

引证文献16

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部