期刊文献+

海量数据分析及处理算法实现 被引量:4

Accomplishment of Algorithm of Massive Data Analysis and Processing
下载PDF
导出
摘要 随着科学技术的发展,计算机的计算能力每年也都在飞快增长,需要处理的数据量更是呈指数级的增长。这样,对海量数据的分析处理是当今的重要话题之一。在实际应用中,因为笔者需要处理csv文本文件中的海量数据,数据量至少在25M以上,并要求处理时间能达到客户的需求,所以设计了一种快速处理海量数据的算法。该算法中包括对海量数据的提取、分析、处理等过程。通过对算法验证,处理数据时间达到了预期的要求。 With the development of science and technology, the computing capability of computers grows rapidly every year, so does data that needs processing. Therefore, the analysis and processing of massive data is one of the important topics. In practice, the au- thor designs a fast algorithm for processing massive data to deal with the massive data with the amount of data over at least 25M in csv text file and to achieve customer needs in the required processing time. The algorithm includes the extraction, analysis and processing of massive data, and it achieves the desired requirements via verification of algorithm.
出处 《长春大学学报》 2011年第8期42-45,共4页 Journal of Changchun University
关键词 CSV 海量数据 处理时间 csv massive data processing time
  • 相关文献

参考文献4

  • 1陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1312
  • 2J. Dean and S. Ghemawat. MapReduce: Simplified data processing on largeclusters[ M]. In Proc. OSDI, 2004.
  • 3David J. DeWitt, Jim Gray. Parallel Database Systems[ M]. The Future of High Performance Database Processing, 1992.
  • 4Ben Lorica. HadoopDB[ M]. An Open Source Parallel Database. 2009.

二级参考文献29

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献1311

同被引文献32

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部