摘要
对线性系统的单输入情况,提出2种简单的极点配置算法.2种方法都将未知量归结为一个线性代数方程组的解,而这个线性代数方程组系数矩阵的每一行均为系数矩阵是三角形的线性代数方程组的解.该算法计算简单,计算量少.第一种方法还同时求出配置后矩阵的特征向量,为系统设计提供参考;第二种方法的计算量更少.对第一种方法进行误差分析,证明只要计算精度充分高,都能达到对任意给定的大于0的极点配置误差要求.
Two algorithms for the pole assignment of single-input linear systems are presented. The algorithm reduces an unknown y to a solution of a system of linear algebraic equations. Each row of the coefficient matrix G is a solution of a linear algebraic equation system with a triangle coefficient matrix. In the first algorithm, G is the eigenvector matrix of ~/which is orthogonal similar to state feedback matrix (A +BF). Low cost as compared with many existing algorithms are required.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第4期429-437,共9页
Journal of Shanghai University:Natural Science Edition
基金
上海市重点学科建设资助项目(S30104)