期刊文献+

基于双重逾渗模型的裂隙多孔介质连通性研究 被引量:11

STUDY OF CONNECTIVITY OF FRACTURED POROUS MEDIA BASED ON DUAL-PERCOLATION MODEL
下载PDF
导出
摘要 孔隙和裂隙是裂隙多孔介质的2种渗流通道。在低渗和特低渗情况下,孔隙和裂隙能否构成贯穿的通道,决定介质能否发生渗流。针对低渗和特低渗裂隙多孔介质的连通性,结合孔隙逾渗理论和裂隙逾渗理论,提出一种双重逾渗模型。基于该模型,提出能够反映和比较裂隙多孔介质连通性的2个量化参数A0和D,并重点讨论这2个量化参数物理意义。根据A0和D这2个参数分析裂隙多孔介质的连通性特征。分析结果表明,以D=2为临界值,可以将裂隙多孔介质分为3种类型:"弥散型"、"临界型"、"指向型"。当D>2时,介质具有自封闭趋势,属于"指向型";随着孔隙连通和裂隙方向随机性的增强,这种自封闭趋势会被破坏,使介质趋向于"弥散型",即利于连通。少量长裂隙的存在对介质的连通性起决定作用。 Pores and fractures are two main flow channels in fractured porous media.Under low and ultra-low permeability conditions,whether seepage occurs in media or not is decided by whether pores and fractures can form a penetrated channel or not.A dual-percolation model coupled the pore percolation theory and the fracture percolation theory is presented to study the conductivity of the low and ultra-low fractured porous media.Based on the presented dual-percolation model,two parameters and D are presented to reflect and compare the conductivities of fractured porous media;and the physical meaning of these two parameters is quantitatively discussed.The connectivity of low and ultra-low permeability fractured porous media is investigated based on these two parameters.It is shown that the low and ultra-low permeability fractured porous media can be generally divided into three types by taking as the critical value,i.e.dispersion type,critical type,and directional type.Media are self-sealing when and they can be named as directional type.However,with the enhancements of randomnesses of porous connectivity and fracture directions,the self-sealing tendency will be destroyed and the conductivity will increase,which causes the media tending to become dissipation type.A few long fractures can play a great role on the connectivity of media.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2011年第6期1289-1296,共8页 Chinese Journal of Rock Mechanics and Engineering
基金 国家重点基础研究发展计划(973)项目(2006CB705800)
关键词 岩石力学 双重逾渗 连通性 裂隙逾渗 孔隙逾渗 rock mechanics dual-percolation connectivity fracture percolation pore percolation
  • 相关文献

参考文献2

二级参考文献19

  • 1冯增朝,赵阳升,文再明.岩体裂缝面数量三维分形分布规律研究[J].岩石力学与工程学报,2005,24(4):601-609. 被引量:19
  • 2谢和平,W.G.Pariseau.岩爆的分形特征和机理[J].岩石力学与工程学报,1993,12(1):28-37. 被引量:135
  • 3康天合,赵阳升,靳钟铭.煤体裂隙尺度分布的分形研究[J].煤炭学报,1995,20(4):393-398. 被引量:53
  • 4康天合,阜新矿业学院学报,1994年,13卷,3期,8页
  • 5谢和平,力学学报,1988年,20卷,3期,264页
  • 6Michael C. Sukop,Gert-Jaap van Dijk,Edmund Perfect,Wilko K. P. van Loon.Percolation Thresholds in 2-Dimensional Prefractal Models of Porous Media*[J]. Transport in Porous Media . 2002 (2)
  • 7Robert Connelly,Konstantin Rybnikov,Stanislav Volkov.Percolation of the Loss of Tension in an Infinite Triangular Lattice[J]. Journal of Statistical Physics . 2001 (1-2)
  • 8Ke Xu,Jean-fran?ois Daian,Daniel Quenard.Multiscale Structures to Describe Porous Media Part I: Theoretical Background and Invasion by Fluids[J]. Transport in Porous Media . 1997 (1)
  • 9Vidales A M.Difference percolation on a square lattice. Physica A:Statistical Mechanics and Its Applications . 2000
  • 10Michafl C S,Gert-Jaap V,Edmund P,et al.Percolation thresholds intwo-dimensional prefractal models of porous media. Transport in Porous Media . 2002

共引文献63

同被引文献122

引证文献11

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部