期刊文献+

支撑向量机的若干医学应用研究

THE NUMBER OF MEDICAL SUPPORT VECTOR MACHINE APPLIED RESEARCH
下载PDF
导出
摘要 在医学领域中常用支撑向量机算法对不同的病情症状进行正确的分类和识别.针对所处理数据的不同特征而采用恰当的算法,选择不同的核函数,能够在很大程度上减少计算量,提高分类和识别的速度.如舌色、苔色识别采用线性和非线性结合的交叉训练法,识别率可达93.87%;肿瘤形状特征分类和肾结石分类均采用非线性算法,所用核函数为高斯核函数,准确率可达95%以上. Commonly used in the medical field support vector machines for different symptoms of the disease and identify the correct classification.However,the data processing for different characteristics,the algorithm should be used properly,choose a different kernel function,can significantly reduce the amount of computation,thereby increasing speed.Such as the tongue color,fur color identification using a combination of linear and nonlinear cross-training method,recognition rate is 93.87%;tumor classification and shape of the stones are non-linear classification algorithm,the kernel function used for the Gaussian kernel,accuracy rate of up to 95%.
作者 胡灵芝
出处 《陕西科技大学学报(自然科学版)》 2011年第4期89-92,共4页 Journal of Shaanxi University of Science & Technology
关键词 支撑向量机 核函数 舌色识别 肿瘤 肾结石分类 support vector machine kernel function tongue color recognition cancer kidney stones category
  • 相关文献

参考文献4

二级参考文献18

  • 1王爱民.用于舌诊客观化的图像分析技术的研究,北京工业大学博士论文[M].,2001..
  • 2Hsu Chin wei, Lin Chin-Jen. A comparison of Methods for Multi-class Support Vector Machines [DB/OL]. http://www.csic.ntu.cdu.tw/ cjlin/papcrs.html.
  • 3Weston J, Watkins C. Multi-class support vector machines. Technical Report [R]. CSD-TR-98-04. Royal Holloway, 1998.
  • 4Platt J C. Cristianini N, Taylor J Shawe. Large margin DAGs for multiclass classification [J]. In: Advances in Neural Information Processing Systems, 2000, 12: 547-553.
  • 5VapnikVladimirN著 张学工译.统计学习理论的本质 [M].北京:清华大学出版社,2000..
  • 6Wang Aimin, Shen Lansun, Zhao Zhongxu. Fuzzy Automatic Detecting the Thickness of Tongue-Covering From a Tongue image [A]. ICEMI'99 [C]. Harbin, China, 1999. 863-867.
  • 7Wang Aimin, Shen Lansun, Zhao Zhongxu. Color tongue Image Segmentation Using Fuzzy Kohonen Networks and Genetic Algorithm [A]. Proceedings of SPIE [C]. San Jose, USA, 2000, 3962: 182-190.
  • 8BURBIDGE R,TROTTER M,BUXTON B,et al.Drug design by machine learning:support vector machines for pharmaceutical data analysis[J].Comput Chem,2001,26:5-14.
  • 9CAI Y D,LIU X J,XU X B,et al.Prediction of protein structural classes by support vector machines[J].Comput Chem,2002,26:293-296.
  • 10BAO L,SUN Z R.Identifying genes related to drug anticancer mechanisms using support vector machine[J].FEBS Lett,2002,521:109-114.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部