期刊文献+

基于变异和交叉的改进粒子群算法 被引量:2

PARTICLE SWARM OPTIMIZATION BASED ON MUTATION AND CROSSOVER
下载PDF
导出
摘要 为克服粒子群算法早熟收敛的缺点,通过引入变异和交叉算子,设计了一种新的粒子群算法.通过对常用测试函数的数值试验,说明了新算法不仅能有效地避免早熟收敛,而且具有更好的收敛速度. In order to overcome the premature convergence of particle swarm optimization algorithm,an improved new algorithm is proposed by introducing mutation and crossover operators.Several benchmark functions are tested and the experimental results show that the new algorithm not only effectively solves the premature convergence problem,but also significantly speeds up the convergence.
出处 《陕西科技大学学报(自然科学版)》 2011年第4期121-124,共4页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金资助项目(6067106310902062)
关键词 变异 交叉 粒子群算法 优化 早熟收敛 mutation crossover particle swarm opertimization premature convergence
  • 相关文献

参考文献5

  • 1J. Kermedy,R. Eberhart. Particle Swarm Optimization[C]. Proc. IEEE International Conf. on Neural Networks. Perth. Australia, 1995:1 943-1 948.
  • 2Eberhart R C, Kennedy J. A New Optimizer Using Particles Warm Theory[A]. Proc. of the Sixth International Symposium on Micro Machine and Human Science[C]. Nagoya, 1955:39-43.
  • 3Eberhart R. C,Shi Y. Particle Swarm Optimizer:Developments, Applications and Resources[C]. Proceeding of IEEE Congress on Evolutionary Computation, 2001: 81-86.
  • 4Shi Y H, Eberhart R C. A Modified Particle Swarm Optimizer[A]. IEEE World Congress on Computational Intelligence[C]. Anchorage, 1998 : 69-73.
  • 5刘伟,周育人.一种改进惯性权重的PSO算法[J].计算机工程与应用,2009,45(7):46-48. 被引量:33

二级参考文献10

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conferece on Neural Networks.USA:IEEE Press, 1995,4:1942-1948.
  • 4Eberhart R C,Kermedy J.A new optimizer using particle swarm theroy[C]//Proc of the 6th international Symposium on MicroMachine and Hunan Science, Nagoya, Japan, 1995 : 39-43.
  • 5Shi Y,Eberhart R.A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence,Anchorage,Alaska, 1998:69-73.
  • 6Lei Kai-you,Wang Fang,Qiu Yu-hui,et al.An adaptive inertia weight strategy for particle swarm optimizer[C]//The 3rd Intl Conf on Mechat Ronics and Information Technology,Chongqing,China, 2005.
  • 7van den Bergh F.An analysis of particle swarm optimizers[D].South Africa: University of Pretoria, 2002.
  • 8Esmin A A A,Lambert-Torres G,de Souza A C Z.A hybrid particle swarm optimization applied to loss power minimization[J].IEEE Trans Power System, 2005,20(2) : 859-866.
  • 9李炳宇,萧蕴诗,汪镭.一种求解高维复杂函数优化问题的混合粒子群优化算法[J].信息与控制,2004,33(1):27-30. 被引量:25
  • 10吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:453

共引文献32

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部