期刊文献+

基于混沌高效遗传算法优化SVM的交通量预测 被引量:4

Prediction of Traffic Flow Using Support Vector Machine Optimized by Chaos Higher Efficient Genetic Algorithm
下载PDF
导出
摘要 针对交通量预测本身所存在的小样本、非线性和复杂性等特点,利用支持向量机建立了基于RBF核函数的SVM交通量预测模型,采用基于混沌映射和加速遗传算法的混沌高效遗传算法对SVM模型参数C,ε和δ2进行优选,结合某市1978~2008年交通量实测资料进行了仿真验证,与GA-SVM模型和BP神经网络模型的仿真预测结果对比表明:该模型取得了较好的预测效果,可有效应用于城市交通量的预测. A SVM prediction model of traffic flow is built with kernel function of RBF,and chaos higher efficient genetic algorithm based on chaos map and genetic algorithm is used to preference the parameters С,ε and δ2 of SVM,aiming at traffic flow prediction′s feature of small sample,non-linear and complexity.At last simulation verification with observed passenger volume data over 1978-2008 was made.Compaing with GA-SVM model and tradition BP model,analysis represents that this model have better prediction result,and can be effectively applied to prediction of traffic flow.
出处 《武汉理工大学学报(交通科学与工程版)》 2011年第4期649-653,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 教育部博士点专项基金项目(批准号:200901411105) 河南省交通厅科技计划项目(批准号:2010D107-4)资助
关键词 公路交通流量预测 支持向量机 加速遗传算法 混沌 traffic-flow prediction support vector machine acceleration genetic algorithm chaos
  • 相关文献

参考文献6

  • 1Kim Kyoung -jae. Financial time series forecasting u- sing support vector machines [J]. Neuron computing (S0925-2312), 2003, 55:307-319.
  • 2Vapnik V N. An overview of statistical learning theo- ry [J]. IEEE Transactions on Neural Networks (S1045-9227), 1999, 10(5):988- 999.
  • 3Keerthi K, Lin C J. Asymptotic Behaviors of Sup- port Vector Machines with Gaussian Kernel [J]. Neural Computation, 2003,153 (3):1 667-1 689.
  • 4Cherkessk V, Yunqian M A. Practical selection of SVM parameters and noise estimation for SVM re- gression [J]. Neural Networks, 2004, 17(1): 113- 126.
  • 5Rettemeir K, Falkenhagen B, Kongeter J. Risk as- sessment new trends in Germany[C]//ICOLD. The Proceedings of 21th Int Congress on Large Dams. Beijing: the International Commission on Large Dams, 2000: 625-641.
  • 6Liu B, Wang L, Jin Y H, et al. Improved particle swarm optimization combined with chaos[J]. Chaos Solutions and Fractals, 2005, 25(5):1 261.

同被引文献49

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部