期刊文献+

DAMAGE DETECTION STRATEGY FOR RETICULATED STRUCTURES BASED ON INCOMPLETE STRAIN MODE 被引量:1

DAMAGE DETECTION STRATEGY FOR RETICULATED STRUCTURES BASED ON INCOMPLETE STRAIN MODE
原文传递
导出
摘要 Damage detection based on strain responses of vibration is highly attractive for monitoring long-span reticulated structures.However,there are a lot of structure members in reticulated structures and it is impossible to install strain sensors in each member.Therefore,how to locate and quantify damages with the incomplete mode shapes obtained from few strain sensors is a challenge topic.A new strategy,named incomplete strain mode damage detection(ISMDD) strategy,is proposed in this paper.In the strategy,the distribution of the strain sensors in the reticulated structures can be optimized through sensitive analysis on strain mode perturbation matrix,which can be obtained by perturbation theory.Mode assurance criterion(MAC) value is applied in damage location,and the members with relative large MAC values are defined as damage members.In addition,damage index obtained by solving the perturbation equation is used for damage quantification.Numerical analysis on a long-span reticulated structure,including damage location and quantification for single-and multi-member damages,detection for different damage quantity,the effect analysis of sensor quantity,are performed to verify the effectiveness of the proposed ISMDD strategy.It can be shown from the analysis that the ISMDD strategy is effective in damage location and quantification for both single-and multi-member damages.And the quantity of strain sensors has effect on damage location,but has no obvious influence on damage quantification.Additionally,the anti-noise pollution ability analysis of the ISMDD strategy is carried out,which shows that the ISMDD strategy has excellent anti-noise pollution ability for both single-and multi-damaged members. Damage detection based on strain responses of vibration is highly attractive for monitoring long-span reticulated structures.However,there are a lot of structure members in reticulated structures and it is impossible to install strain sensors in each member.Therefore,how to locate and quantify damages with the incomplete mode shapes obtained from few strain sensors is a challenge topic.A new strategy,named incomplete strain mode damage detection(ISMDD) strategy,is proposed in this paper.In the strategy,the distribution of the strain sensors in the reticulated structures can be optimized through sensitive analysis on strain mode perturbation matrix,which can be obtained by perturbation theory.Mode assurance criterion(MAC) value is applied in damage location,and the members with relative large MAC values are defined as damage members.In addition,damage index obtained by solving the perturbation equation is used for damage quantification.Numerical analysis on a long-span reticulated structure,including damage location and quantification for single-and multi-member damages,detection for different damage quantity,the effect analysis of sensor quantity,are performed to verify the effectiveness of the proposed ISMDD strategy.It can be shown from the analysis that the ISMDD strategy is effective in damage location and quantification for both single-and multi-member damages.And the quantity of strain sensors has effect on damage location,but has no obvious influence on damage quantification.Additionally,the anti-noise pollution ability analysis of the ISMDD strategy is carried out,which shows that the ISMDD strategy has excellent anti-noise pollution ability for both single-and multi-damaged members.
出处 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第4期308-317,共10页 固体力学学报(英文版)
基金 supported by the Six Kinds of Peak Talents in Jiangsu Province the Momentous Research Plan in National Natural Science Foundation of China (No. 90915004) 333 High-level Talent Project in Jiangsu Province the National Key Technology R&D Program of China (No. 2011BAK02B03)
关键词 damage detection reticulated structure strain responses optimal sensor placement damage detection reticulated structure strain responses optimal sensor placement
  • 相关文献

参考文献1

二级参考文献10

共引文献5

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部