期刊文献+

具有阶段结构的捕食者-食饵模型解的整体性态

Stage-Structure Integrity of Predator-prey Model Solution
下载PDF
导出
摘要 文章讨论一类捕食者具有阶段结构的捕食者—食饵模型.考虑该模型在常微分系统中的非负平衡点渐近稳定性,并且讨论相应反应扩散模型在齐次Neumann边界条件下整体解的存在性,一致有界性和非负平衡点的渐近稳定性. In this paper, a class of predator - prey model with stage - structure for the predator was studied. The asymptotical stability of nonnegative equilibrium points for the model of ODE type, and the existence and uniforn boundedness of global solutions and the stability of the nonnegative equilibrium points for the model of the corresponding reaction - diffusion system under Neumman boundary condition were discussed.
出处 《西北民族大学学报(自然科学版)》 2011年第2期13-18,83,共7页 Journal of Northwest Minzu University(Natural Science)
基金 国家自然科学基金资助项目(11061031) 西北民族大学中青年基金资助项目(XBMU-2010-BD-6)
关键词 阶段结构 反应扩散 捕食者-食饵模型 稳定性 Stage - structure Reaction - Diffusion Predator - Prey Model Stability
  • 相关文献

参考文献7

  • 1Aiello W G, Freedman H I. A time-delay model of single-species growth with stage structure[J].Math Biosci, 1990, 101: 139-153.
  • 2Aiello W G, Freedman H I, Wu J H. Analysis of a model representing stage-structure population growth with state-dependent time delay[J].SIAM J Appl Math, 1992, 52: 855-869.
  • 3Zhang X, Chen L, Neumann A U. The stage-structured predator-prey model and optimal harvesting policy[J].Math Biosci, 2000, 168: 201-210.
  • 4徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 5Du Y, Pang P, Wang M. Qualitative analysis of a prey-predator model with stage structure for the predator[J]. SlAM J Appl Math, 2008, 69: 596-620.
  • 6Pang P, Wang M. Strategy and stationary pattern in a three-species predator-prey model[J]. J. Diff. Eqs, 2004, 200: 245-273.
  • 7Henry D. Geometic Theory of Semilinear Parabolic Equations[M]. New York: Springer-Verlag, 1993.

二级参考文献15

  • 1Goh B S. Global stability in two species interactions. J Math Biol, 1976, 3(3-4): 313-318
  • 2Hastings A. Global stability in two species systems. J Math Biol, 1978, 5(4): 399-403
  • 3He X Z. Stability and delays in a predator-prey system. J Math Anal Appl, 1996, 198(2): 355-370
  • 4Aièllo W G, Freedman H I. A time delay model of single-species growth with stage structure. Math Biosci,1990, 101(2): 139-153
  • 5Aiello W G, Freedman H I, Wu J. Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J Appl Math, 1992, 52(3): 855- 869
  • 6Wang W, Chen L. A predator-prey system with stage structure for predator. Comput Maria Appl, 1997,33(8): 83 -91
  • 7Magnusson K G, Destabilizing effect of cannibalism on a structured predator-prey system. Math Biosci,1999, 155(1): 61-75
  • 8Zhang X, Chen L, Neumann A U. The stage-structured predator-prey model and optimal havesting policy.Math Biosci, 2000, 168(2): 201- 210
  • 9Ma Z. Mathematical Modeling and Research in Ecology. Hefei: Anhui Educational Publishing House,1996. 25- 26
  • 10Cushing J M. Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics 20. Heidelberg, Springer, 1979. 13-70

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部